[OpenCV实战]22 使用EigenFaces进行人脸重建
目录
1 背景
1.1 什么是EigenFaces?
1.2 坐标的变化
2 面部重建
2.1 计算新面部图像的PCA权重
2.2 使用EigenFaces进行面部重建
3 参考
在这篇文章中,我们将学习如何使用EigenFaces实现人脸重建。我们需要了解主成分分析(PCA)和EigenFaces。
1 背景
1.1 什么是 EigenFaces ?
在我们之前的文章中,我们解释了Eigenfaces是可以添加到平均(平均)面部以创建新的面部图像的图像。我们可以用数学方式写这个,

其中
F是一张新生成的脸部图像;
Fm是平均人脸图像;
Fi是一个EigenFace(特征脸);
 是我们可以选择创建新图的标量系数权重,可正可负。
在我们之前的文章中,我们解释了如何计算EigenFaces,如何解释它们以及如何通过改变权重来创建新面孔。
现在假设,我们将获得一张新的面部照片,如下图所示。我们如何使用EigenFaces重建照片F?换句话说,我们如何找到在上面的等式中使用的权重将产生面部图像作为输出?这正是本文所涉及的问题,但在我们尝试这样做之前,我们需要一些线性代数背景。下图左侧是原始图像。左边的第二个图像是使用250个EigenFaces构建的,第三个图像使用1000个Eigenfaces,最右边的图像使用4000个Eigenfaces。

1.2 坐标的变化
在一个三维坐标系中,坐标轴x,y,z由下图中黑色线条表示。您可以想象相对于原始的x,y,z帧,以(xo, yo,zo)点进行旋转和平移,获得另一组垂直轴。在图2中,我们以蓝色显示该旋转和平移坐标系的轴X'Y'Z’。在X,Y,Z坐标系的点(x,y,z)用红点表示。我们如何找到X'Y'Z'坐标系中点(x',y',z')的坐标?这可以分两步完成。
转换:首先,我们可以以原坐标系点(x,y,z)通过减去新坐标系的原点(xo,yo,zo)来实现平移,所以我们有了一个新的向量(x-xo,y-yo,z-zo)。
投影:接下来,我们需要将(x-xo,y-yo,z-zo)投影到x',y',z'上,它只是(x-xo,y-yo,z-zo)的点积,方向分别为x',y'和z'。下图中的绿线显示了红点到Z'轴上的投影。让我们看看这种技术如何应用于人脸重建。

2 面部重建
2.1 计算新面部图像的 PCA 权重
正如我们在上一篇文章中所看到的,为了计算面部数据的主要成分,我们将面部图像转换为长矢量。例如,如果我们有一组尺寸为100x100x3的对齐面部图像,则每个图像可以被认为是长度为100x100x3=30000的矢量。就像三个数字的元组(x,y,z)代表3D空间中的一个点一样,我们可以说长度为30,000的向量是30,000维空间中的一个点。这个高维空间的轴线就像维坐标轴xyz彼此垂直一样。主成分(特征向量)在这个高维空间中形成一个新的坐标系,新的原点是主成分分析向量平均值。
给定一个新图像,我们找到权重流程如下:
1)矢量化图像:我们首先从图像数据创建一个长矢量。这很简单,重新排列数据只需要一行或两行代码。
2)减去平均向量.
3)主成分映射:这可以通过计算每个主分量与平均向量的差的点积来实现。所给出的点积结果就是权重 
 。
4)组合向量:一旦计算了权重,我们可以简单地将每个权重乘以主成分并将它们加在一起。最后,我们需要将平均人脸向量添加到此总和中。
5)将矢量重置为人脸图像:作为上一步的结果,我们获得了一个30k长的矢量,并且可以将其重新整形为100 x 100 x 3图像。这是最终的图像。
在我们的示例中,100 x 100 x3图像具有30k尺寸。在对2000个图像进行PCA之后,我们可以获得2000维的空间,并且能够以合理的精度水平重建新面部。过去采用30k数字表示的内容现在仅使用2k个数字表示。换句话说,我们只是使用PCA来减少面部空间的尺寸。
2.2 使用 EigenFaces 进行面部重建
假设您已下载代码,我们将查看代码的重要部分。首先,在文件createPCAModel.cpp和createPCAModel.py中共享用于计算平均人脸和EigenFaces的代码。我们在上一篇文章中解释了该方法,因此我们将跳过该解释。相反,我们将讨论reconstructFace.cpp和reconstructFace.py。
代码如下:
C++:
#include "pch.h"
#include <iostream>
#include <fstream>
#include <sstream>
#include <opencv2/opencv.hpp>
#include <stdlib.h>
#include <time.h>
using namespace cv;
using namespace std;
// Matrices for average (mean) and eigenvectors
Mat averageFace;
Mat output;
vector<Mat> eigenFaces;
Mat imVector, meanVector, eigenVectors, im, display;
// Display result
// Left = Original Image
// Right = Reconstructed Face
void displayResult( Mat &left, Mat &right)
{
	hconcat(left,right, display);
	resize(display, display, Size(), 4, 4);
	imshow("Result", display);
}
// Recontruct face using mean face and EigenFaces
void reconstructFace(int sliderVal, void*)
{
	// Start with the mean / average face
	Mat output = averageFace.clone();
	for (int i = 0;  i < sliderVal; i++)
	{
		// The weight is the dot product of the mean subtracted
		// image vector with the EigenVector
		double weight = imVector.dot(eigenVectors.row(i)); 
		// Add weighted EigenFace to the output
		output = output + eigenFaces[i] * weight;
	}
	displayResult(im, output);
}
int main(int argc, char **argv)
{
	// Read model file
	string modelFile("pcaParams.yml");
	cout << "Reading model file " << modelFile << " ... " ; 
	FileStorage file(modelFile, FileStorage::READ);
	// Extract mean vector
	meanVector = file["mean"].mat();
	// Extract Eigen Vectors
	eigenVectors = file["eigenVectors"].mat();
	// Extract size of the images used in training.
	Mat szMat = file["size"].mat();
	Size sz = Size(szMat.at<double>(1,0),szMat.at<double>(0,0));
	// Extract maximum number of EigenVectors.
	// This is the max(numImagesUsedInTraining, w * h * 3)
	// where w = width, h = height of the training images.
	int numEigenFaces = eigenVectors.size().height;
	cout <<  "DONE" << endl; 
	cout << "Extracting mean face and eigen faces ... ";
	// Extract mean vector and reshape it to obtain average face
	averageFace = meanVector.reshape(3,sz.height);
	// Reshape Eigenvectors to obtain EigenFaces
	for(int i = 0; i < numEigenFaces; i++)
	{
			Mat row = eigenVectors.row(i);
			Mat eigenFace = row.reshape(3,sz.height);
			eigenFaces.push_back(eigenFace);
	}
	cout << "DONE" << endl; 
	// Read new test image. This image was not used in traning.
	string imageFilename("test/satya1.jpg");
	cout << "Read image " << imageFilename << " and vectorize ... ";
	im = imread(imageFilename);
	im.convertTo(im, CV_32FC3, 1/255.0);
	// Reshape image to one long vector and subtract the mean vector
	imVector = im.clone();
	imVector = imVector.reshape(1, 1) - meanVector;
	cout << "DONE" << endl; 
	// Show mean face first
	output = averageFace.clone(); 
	cout << "Usage:" << endl
	<< "\tChange the slider to change the number of EigenFaces" << endl
	<< "\tHit ESC to terminate program." << endl;
	namedWindow("Result", CV_WINDOW_AUTOSIZE);
	int sliderValue; 
	// Changing the slider value changes the number of EigenVectors
	// used in reconstructFace.
	createTrackbar( "No. of EigenFaces", "Result", &sliderValue, numEigenFaces, reconstructFace);
	// Display original image and the reconstructed image size by side
	displayResult(im, output);
	waitKey(0);
	destroyAllWindows();
	return 0;
}
Python:
# Import necessary packages
import os
import sys
import cv2
import numpy as np
'''
 Display result
 Left = Original Image
 Right = Reconstructed Face
'''
def displayResult(left, right)	:
	output = np.hstack((left,right))
	output = cv2.resize(output, (0,0), fx=4, fy=4)
	cv2.imshow("Result", output)
# Recontruct face using mean face and EigenFaces
def reconstructFace(*args):
	# Start with the mean / average face
	output = averageFace
	for i in range(0,args[0]):
		'''
		The weight is the dot product of the mean subtracted
		image vector with the EigenVector
		'''
		weight = np.dot(imVector, eigenVectors[i])
		output = output + eigenFaces[i] * weight
	displayResult(im, output)
if __name__ == '__main__':
	# Read model file
	modelFile = "pcaParams.yml"
	print("Reading model file " + modelFile, end=" ... ", flush=True)
	file = cv2.FileStorage(modelFile, cv2.FILE_STORAGE_READ)
	# Extract mean vector
	mean = file.getNode("mean").mat()
	# Extract Eigen Vectors
	eigenVectors = file.getNode("eigenVectors").mat()
	# Extract size of the images used in training.
	sz = file.getNode("size").mat()
	sz = (int(sz[0,0]), int(sz[1,0]), int(sz[2,0]))
	'''
	Extract maximum number of EigenVectors.
	This is the max(numImagesUsedInTraining, w * h * 3)
	where w = width, h = height of the training images.
	'''
	numEigenFaces = eigenVectors.shape[0]
	print("DONE")
	# Extract mean vector and reshape it to obtain average face
	averageFace = mean.reshape(sz)
	# Reshape Eigenvectors to obtain EigenFaces
	eigenFaces = []
	for eigenVector in eigenVectors:
		eigenFace = eigenVector.reshape(sz)
		eigenFaces.append(eigenFace)
	# Read new test image. This image was not used in traning.
	imageFilename = "test/satya2.jpg"
	print("Read image " + imageFilename + " and vectorize ", end=" ... ");
	im = cv2.imread(imageFilename)
	im = np.float32(im)/255.0
	# Reshape image to one long vector and subtract the mean vector
	imVector = im.flatten() - mean;
	print("Done");
	# Show mean face first
	output = averageFace
	# Create window for displaying result
	cv2.namedWindow("Result", cv2.WINDOW_AUTOSIZE)
	# Changing the slider value changes the number of EigenVectors
	# used in reconstructFace.
	cv2.createTrackbar( "No. of EigenFaces", "Result", 0, numEigenFaces, reconstructFace)
	# Display original image and the reconstructed image size by side
	displayResult(im, output)
	cv2.waitKey(0)
	cv2.destroyAllWindows()
您可以创建模型pcaParams.yml使用createPCAModel.cpp和createPCAModel.py。该代码使用CelebA数据集的前1000个图像,并将它们首先缩放到一半大小。所以这个PCA模型是在大小(89x109)的图像上训练的。除了1000张图像之外,代码还使用了原始图像的垂直翻转版本,因此我们使用2000张图像进行训练。。但是createPCAModel文件里面没有reisze函数,要自己缩放为89X109分辨率。生成了pcaParams.yml文件,再通过reconstructFace获取人脸。
本文所有代码包括createPCAModel文件见:
https://github.com/luohenyueji/OpenCV-Practical-Exercise
但是图像没有列出,从CelebA数据集下载
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
3 参考
https://www.learnopencv.com/face-reconstruction-using-eigenfaces-cpp-python/
[OpenCV实战]22 使用EigenFaces进行人脸重建的更多相关文章
- OpenCV实战:人脸关键点检测(FaceMark)
		
Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author: Amusi Date: 2018-03-20 ...
 - [OpenCV实战]2 人脸识别算法对比
		
在本教程中,我们将讨论各种人脸检测方法,并对各种方法进行比较.下面是主要的人脸检测方法: 1 OpenCV中的Haar Cascade人脸分类器: 2 OpenCV中的深度学习人脸分类器: 3 Dli ...
 - 机器学习实战:用nodejs实现人脸识别
		
机器学习实战:用nodejs实现人脸识别 在本文中,我将向你展示如何使用face-recognition.js执行可靠的人脸检测和识别 . 我曾经试图找一个能够精确识别人脸的Node.js库,但是 ...
 - opencv基于PCA降维算法的人脸识别
		
opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as n ...
 - [OpenCV实战]49 对极几何与立体视觉初探
		
本文主要介绍对极几何(Epipolar Geometry)与立体视觉(Stereo Vision)的相关知识.对极几何简单点来说,其目的就是描述是两幅视图之间的内部对应关系,用来对立体视觉进行建模,实 ...
 - [实战]MVC5+EF6+MySql企业网盘实战(22)——图片列表
		
写在前面 实现逻辑是:单击图片节点,加载所有的当前用户之前上传的图片,分页,按时间倒序加载. 系列文章 [EF]vs15+ef6+mysql code first方式 [实战]MVC5+EF6+MyS ...
 - [OpenCV实战]50 用OpenCV制作低成本立体相机
		
本文主要讲述利用OpenCV制作低成本立体相机以及如何使用OpenCV创建3D视频,准确来说是模仿双目立体相机,我们通常说立体相机一般是指双目立体相机,就是带两个摄像头的那种(目就是指眼睛,双目就是两 ...
 - [OpenCV实战]48 基于OpenCV实现图像质量评价
		
本文主要介绍基于OpenCV contrib中的quality模块实现图像质量评价.图像质量评估Image Quality Analysis简称IQA,主要通过数学度量方法来评价图像质量的好坏. 本文 ...
 - [OpenCV实战]1 基于深度学习识别人脸性别和年龄
		
目录 1基于CNN的性别分类建模原理 1.1 人脸识别 1.2 性别预测 1.3 年龄预测 1.4 结果 2 代码 参考 本教程中,我们将讨论应用于面部的深层学习的有趣应用.我们将估计年龄,并从单个图 ...
 
随机推荐
- Hive之命令
			
Hive之命令 说明:此博客只记录了一些常见的hql,create/select/insert/update/delete这些基础操作是没有记录的. 一.时间级 select day -- 时间 ,d ...
 - Java学生管理系统(详解)
			
相信大部分人都有接触过这个 Java 小项目--学生管理系统,下面会分享我在做这个项目时的一些方法以及程序代码供大家参考(最后附上完整的项目代码). 首本人只是个初学Java的小白,可能项目中有许多地 ...
 - MySQL的日志文件
			
本文将重点介绍MySQL的日志文件类型,并讲解其作用,并结合一定实操演示,相信跟着做下来你会对MySQL有更深的理解. 文件的概念 在开始讲MySQL日志文件之前,首先我们要明确一下文件的概念.MyS ...
 - 【UML】统一建模语言
			
如果是准备学习设计模式的同学,可以只了解类图相关的知识 而如果是在准备软件设计师考试的同学,或许会对你有点帮助 正在施工...... 参考博客:https://blog.csdn.net/unique ...
 - LINQ使用小贴士
			
LINQ中的排序操作符 OrderBy:按升序对序列的元素进行排序.OrderByDescending:按降序对序列的元素排序.ThenBy:按升序对序列中的元素执行后续排序.ThenByDescen ...
 - 重新整理 .net core 实践篇 ———— linux上排查问题实用工具 [外篇]
			
前言 介绍下面几个工具: Lldb createdump dotnet-dump dotnet-gcdump dotnet-symbol Procdump 该文的前置篇为: https://www.c ...
 - jvm双亲委派机制详解
			
双亲委派机制  记录一下JVM的双亲委派机制学习记录. 类加载器种类  当我们运行某一个java类的main方法时,首先需要由java虚拟机的类加载器将我们要执行的main方法所在的class文件 ...
 - zk,kafka,redis哨兵,mysql容器化
			
1. zookeeper,kafka容器化 1.1 zookeeper+kafka单机docker模式 docker pull bitnami/zookeeper:3.6.3-debian-11-r4 ...
 - 安卓APP和小程序渗透测试技巧总结
			
安卓APP和小程序渗透测试技巧总结 免责声明: 安卓7以上抓取https流量包 证书信任 首先安装OpenSSL,此步骤不再赘述,可以参考百度. 然后安装模拟器(我使用的是夜神模拟器). 导出需要的证 ...
 - EdgeCore初学习
			
### 前提 初学edgeCore,有不足之处,欢迎指正 ### 大纲 1. 日志查看2. 重启3. 在线编译4. sftp同步代码5. 整体架构6. 通信协议7. 模拟实现(待实现) ### 步骤 ...