Analysis

Coreset 是带有权重的数据子集,目的是在某个方面模拟完整数据的表现(例如损失函数的梯度,既可以是在训练数据上的损失,也可以是在验证数据上的损失);

给出优化目标的定义:

$w^t$ 是 t 轮得到的 coreset 权重,$X_t$ 是 t 轮得到的 coreset,$L$ 既可以是在训练数据上的损失,也可以是在验证数据上的损失,$L_T$ 是在 coreset 上的损失函数,$\theta_t$ 是 t 轮得到模型参数;

最小化 ERR 来使 Coreset 最好地模拟损失函数(训练集或验证集)的梯度。

如何优化这个问题

将其转化为次模函数:

之后可以用贪心算法快速解决。

Tricks

  • 只计算最后一层的梯度;
  • 现在完整的数据集上跑几个 epoch,获得一个较为靠近的模型权重(类似于 warm-up 和 pre-training);
  • 每过 R 个 epoch 再更新 coreset。

论文笔记 - GRAD-MATCH: A Gradient Matching Based Data Subset Selection For Efficient Learning的更多相关文章

  1. Person Re-identification 系列论文笔记(三):Improving Person Re-identification by Attribute and Identity Learning

    Improving Person Re-identification by Attribute and Identity Learning Lin Y, Zheng L, Zheng Z, et al ...

  2. 论文笔记之:From Facial Parts Responses to Face Detection: A Deep Learning Approach

    From Facial Parts Responses to Face Detection: A Deep Learning Approach ICCV 2015 从以上两张图就可以感受到本文所提方法 ...

  3. 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives

    (聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...

  4. 论文笔记:Cross-Domain Visual Matching via Generalized Similarity Measure and Feature Learning

    Cross-Domain Visual Matching,即跨域视觉匹配.所谓跨域,指的是数据的分布不一样,简单点说,就是两种数据「看起来」不像.如下图中,(a)一般的正面照片和各种背景角度下拍摄的照 ...

  5. 论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN

    论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN ICCV 2017 Paper: http://op ...

  6. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  7. 论文笔记:Mastering the game of Go with deep neural networks and tree search

    Mastering the game of Go with deep neural networks and tree search Nature 2015  这是本人论文笔记系列第二篇 Nature ...

  8. 论文笔记-SPP_NET中提到的金字塔

    时隔这么久终于考完试放假了,现在终于有时间开始研究spp net的相关内容了,看了几篇网上的博客,发现看完之后还是不是很懂,于是乎下载了spp net的原始论文<Spatial Pyramid ...

  9. Self-paced Clustering Ensemble自步聚类集成论文笔记

    Self-paced Clustering Ensemble自步聚类集成论文笔记 2019-06-23 22:20:40 zpainter 阅读数 174  收藏 更多 分类专栏: 论文   版权声明 ...

随机推荐

  1. HTML <option> 标签的属性:selected ; disabled ; label ; value;

    HTML <option> 标签的属性:selected ;  disabled ; label ; value; 1. selected="selected" sel ...

  2. IO流----读取文件,复制文件,追加/插入文件

    文件结构 读取文件 第一种方式 public class Test { public static void main(String[] args) throws IOException { // 最 ...

  3. Qt Q_OBJECT编译问题

    编译问题 添加Q_OBJECT后需要qmake 多重继承 添加了Q_ENUM之类的宏,就需要Q_OBJECT 添加了Q_OBJECT,就需要类继承自QObject 如果有多重继承关系,QObject一 ...

  4. openstack中Keystone组件简解

    一.Keystone服务概述 在Openstack框架中,keystone(Openstack Identity Service)的功能是负责验证身份.校验服务规则和发布服务令牌的,它实现了Opens ...

  5. Linux常用基础命令三

    一.ln 软链接 软链接也称为符号链接,类似于 windows 里的快捷方式,有自己的数据块,主要存放 了链接其他文件的路径. 在查看文件目录中,软连接是以'l'开头 创建软链接 ln -s [原文件 ...

  6. KingbaseESV8R6如何针对表单独设置vacuum策略

    背景 书接上文 KingbaseES应对表年龄增长过快导致事务回卷 ,有些特殊业务场景不能靠全局的autovacuum方法,例如大型数据库系统,频繁做update的系统,还有上文提到的做实时数据同步的 ...

  7. itoa与atoi函数

    // 自己参考并编写的itoa与atoi函数 // 支持10进制整形,支持16进制整形,支持负数 // 20220228,修复负数字符字符串会转换成正数的bug#include <stdio.h ...

  8. LVGL 模拟仿真(Windows+CodeBlocks)

    一.准备材料 Code Blocks官网:https://www.codeblocks.org/ Code Blocks 汉化包:链接: https://pan.baidu.com/s/12zB5bD ...

  9. Docker 数据共享与持久化

  10. 1.nexus的安装

    1,Nexus 介绍 Nexus是什么 Nexus 是一个强大的maven仓库管理器,它极大地简化了本地内部仓库的维护和外部仓库的访问. 不仅如此,他还可以用来创建yum.pypi.npm.docke ...