\(\text{Problem}\)

元素带类型与权值,每次修改权值或类型,求区间每种类型和的 \(k\) 次方和

强制在线

\(\text{Solution}\)

显然简单分块,根据询问需要发现要

维护任意两块之间的答案,每种类型的权值在块中的前缀和

询问就很简单,考虑枚举散块出现的类型先去除其在整块中的贡献再加上散块与整块一起的贡献即可

考虑修改,涉及一个元素,权值和的前缀和只要暴力更新这个元素所在块与其后的所有块即可

任意两块间的答案的更新要枚举覆盖它的连续块,整体考虑这个连续块,也只涉及一个点的修改,可以 \(O(1)\) 更新

设块长为 \(d\)

则询问复杂度为 \(O(md)\),修改为 \(O(m\frac{n^2}{d^2})\)

简单计算出当 \(d = n^{\frac 2 3}\) 是最优

还要那类型的动态离散化,哈希表处理即可

本人代码挂了一个测试点,原因未知

\(\text{Code}\)

#include <cstdio>
#include <cmath>
#include <iostream>
#include <cstring>
#include <tr1/unordered_map>
#define re register
using namespace std;
typedef unsigned int uint;
tr1::unordered_map<uint, int> vis; const int N = 1e5 + 5;
int n, m, k, ty, c[N], st[N], ed[N], id[N], size, num, buc[N], col[N];
uint v[N], f[41][N], sf[N][41], g[41][41], t[N], sum[N]; inline uint fpow(uint x, int y){uint s = 1; for(; y; y >>= 1, x = x * x) if (y & 1) s = s * x; return s;}
inline uint SF(int c, int l, int r){return sf[c][r] - sf[c][l - 1];}
void prepare()
{
memset(f, 0, sizeof f), memset(g, 0, sizeof g), memset(sf, 0, sizeof sf);
num = pow(n, 1.0 / 3);
for(re int i = 1; i <= num; i++)
{
st[i] = ed[i - 1] + 1, ed[i] = (i == num ? n : ed[i - 1] + n / num);
for(re int j = st[i]; j <= ed[i]; j++) id[j] = i, f[i][c[j]] += v[j];
}
for(re int i = 1; i <= size; i++)
for(re int j = 1; j <= num; j++) sf[i][j] = sf[i][j - 1] + f[j][i];
for(re int i = 1; i <= num; i++)
for(re int j = i; j <= num; j++)
{
int cnt = 0;
for(re int l = st[j]; l <= ed[j]; sum[c[l]] += v[l], l++) if (!buc[c[l]]) buc[c[l]] = 1, col[++cnt] = c[l];
if (i == j) for(re int l = 1; l <= cnt; l++) g[i][i] += fpow(sum[col[l]], k), buc[col[l]] = sum[col[l]] = 0;
else{
g[i][j] = g[i][j - 1];
for(re int l = 1; l <= cnt; l++)
g[i][j] = g[i][j] - fpow(SF(col[l], i, j - 1), k) + fpow(sum[col[l]] + SF(col[l], i, j - 1), k), buc[col[l]] = sum[col[l]] = 0;
}
}
} inline uint Query(int l, int r)
{
int x = id[l], y = id[r], cnt = 0; uint res = 0;
if (x == y || n <= 5000)
{
for(re int i = l; i <= r; sum[c[i]] += v[i], i++) if (!buc[c[i]]) buc[c[i]] = 1, col[++cnt] = c[i];
for(re int i = 1; i <= cnt; i++) res += fpow(sum[col[i]], k), sum[col[i]] = buc[col[i]] = 0;
return res;
}
for(re int i = l; i <= ed[x]; sum[c[i]] += v[i], i++) if (!buc[c[i]]) buc[c[i]] = 1, col[++cnt] = c[i];
for(re int i = st[y]; i <= r; sum[c[i]] += v[i], i++) if (!buc[c[i]]) buc[c[i]] = 1, col[++cnt] = c[i];
res = g[x + 1][y - 1];
for(re int i = 1; i <= cnt; i++)
res = res - fpow(SF(col[i], x + 1, y - 1), k) + fpow(sum[col[i]] + SF(col[i], x + 1, y - 1), k), buc[col[i]] = sum[col[i]] = 0;
return res;
}
inline void modify1(int x, uint y)
{
int p = id[x];
f[p][c[x]] += y - v[x];
for(re int i = 1; i <= p; i++)
for(re int j = p; j <= num; j++) g[i][j] = g[i][j] - fpow(SF(c[x], i, j), k) + fpow(SF(c[x], i, j) - v[x] + y, k);
for(re int i = p; i <= num; i++) sf[c[x]][i] = sf[c[x]][i - 1] + f[i][c[x]]; v[x] = y;
}
inline void modify2(int x, uint y)
{
int p = id[x]; uint cl = (vis[y] ? vis[y] : (vis[y] = ++size));
for(re int i = 1; i <= p; i++)
for(re int j = p; j <= num; j++)
g[i][j] = g[i][j] - fpow(SF(c[x], i, j), k) + fpow(SF(c[x], i, j) - v[x], k) - fpow(SF(cl, i, j), k) + fpow(SF(cl, i, j) + v[x], k);
f[p][c[x]] -= v[x], f[p][cl] += v[x];
for(re int i = p; i <= num; i++) sf[c[x]][i] = sf[c[x]][i - 1] + f[i][c[x]], sf[cl][i] = sf[cl][i - 1] + f[i][cl];
c[x] = cl;
} int main()
{
freopen("ds.in", "r", stdin), freopen("ds.out", "w", stdout);
scanf("%d%d%d%d", &n, &m, &k, &ty);
for(re int i = 1; i <= n; i++) scanf("%u", &v[i]);
for(re int i = 1; i <= n; c[i] = vis[t[i]], i++) scanf("%u", &t[i]), vis[t[i]] = (vis[t[i]] ? vis[t[i]] : ++size);
prepare(); char op[5]; uint x, y, lst = 0;
for(; m; --m)
{
scanf("%s%u%u", op, &x, &y);
if (ty) x ^= lst, y ^= lst;
if (op[0] == 'Q') printf("%u\n", lst = Query(x, y));
else if (op[0] == 'C') modify1(x, y);
else modify2(x, y);
}
}

JZOJ 7392. 【2021.11.17NOIP提高组联考】数 (ds)的更多相关文章

  1. JZOJ2020年8月11日提高组T4 景点中心

    JZOJ2020年8月11日提高组T4 景点中心 题目 Description 话说宁波市的中小学生在镇海中学参加计算机程序设计比赛,比赛之余,他们在镇海中学的各个景点参观.镇海中学共有n个景点,每个 ...

  2. JZOJ2020年8月11日提高组T3 页

    JZOJ2020年8月11日提高组T3 页 题目 Description 战神阿瑞斯听说2008年在中华大地上,将举行一届规模盛大的奥林匹克运动会,心中顿觉异常兴奋,他想让天马在广阔的天空上,举行一场 ...

  3. JZOJ2020年8月11日提高组T2 宝石

    JZOJ2020年8月11日提高组T2 宝石 题目 Description 见上帝动了恻隐之心,天后也想显示一下慈悲之怀,随即从口袋中取出一块魔术方巾,让身边的美神维纳斯拿到后堂的屏风上去试试,屏风是 ...

  4. JZOJ2020年8月11日提高组T1 密码

    JZOJ2020年8月11日提高组T1 密码 题目 Description 在浩浩茫茫的苍穹深处,住着上帝和他的神仆们,他们闲谈着下界的凡人俗事,对人世间表现的聪明智慧,大加赞赏.今天他们正在观赏大地 ...

  5. JZOJ2020年8月11日提高组反思

    JZOJ2020年8月11日提高组反思 T1 看到题 啊这?! 我看错了吗??? 我理解错题了吗?? 好吧没有-- 高精度模板题,不用多说 T2 看到这种矩阵的问题 以为是前缀和搞事情 结果呢 扫描线 ...

  6. 【2020.11.28提高组模拟】T1染色(color)

    [2020.11.28提高组模拟]T1染色(color) 题目 题目描述 给定 \(n\),你现在需要给整数 \(1\) 到 \(n\) 进行染色,使得对于所有的 \(1\leq i<j\leq ...

  7. 【2020.11.28提高组模拟】T2 序列(array)

    序列(array) 题目描述 ​给定一个长为 \(m\) 的序列 \(a\). 有一个长为 \(m\) 的序列 \(b\),需满足 \(0\leq b_i \leq n\),\(\sum_{i=1}^ ...

  8. 11.5NOIP2018提高组模拟题

    书信(letter) Description 有 n 个小朋友, 编号为 1 到 n, 他们每人写了一封信, 放到了一个信箱里, 接下来每个人从中抽取一封书信. 显然, 这样一共有 n!种拿到书信的情 ...

  9. 求hack or 证明(【JZOJ 4923】 【NOIP2017提高组模拟12.17】巧克力狂欢)

    前言 本人在此题有一种不是题解的方法,但无法证明也找不到反例. 如果各位大神有反例或证明请发至 邮箱:qq1350742779@163.com Description Alice和Bob有一棵树(无根 ...

  10. 【2020.11.30提高组模拟】剪辣椒(chilli)

    剪辣椒(chilli) 题目描述 在花园里劳累了一上午之后,你决定用自己种的干辣椒奖励自己. 你有n个辣椒,这些辣椒用n-1条绳子连接在一起,任意两个辣椒通过用若干个绳子相连,即形成一棵树. 你决定分 ...

随机推荐

  1. 关于CSDN发布博客接口的研究

    前言 其实我之前就有一个想法,实现用 python 代码来发布博客, 因为我个人做了一个发布到 github 博客软件(其实就是实现 git 命令集成,还有markdown的渲染的软件), 如果我弄明 ...

  2. JS笔记合集之对象

    对象 对象基本使用 对象是JS中的一种复合数据类型,它相当于一个容器,在对象中可以存储各种不同类型的数据 而基本数据类型(原始值)只能存储一些简单的数据,如: 语法: 原始创建对象: let obj ...

  3. go-carbon 1.5.0 版本发布,修复已知 bug 和新增德语翻译文件

    carbon 是一个轻量级.语义化.对开发者友好的golang时间处理库,支持链式调用. 目前已被 awesome-go 收录,如果您觉得不错,请给个star吧 github:github.com/g ...

  4. [数据结构]哈希拉链法化解冲突+ASL计算

    看这篇就好(自用,别骂我) 摘自博客园 存疑:学校考试空节点算不算查找次数???

  5. 下载Font Awesome框架

    目录 一:下载Font Awesome框架 二:如何使用font awesome 1.使用图标等样式,点击复制标签即可,需要嵌套在i标签内 2.点击图标,复制标签,然后粘贴使用即可. 3.动态图片等 ...

  6. avue属性详解和使用介绍

    官方文档:https://www.avuejs.com/form/form.html <template> <!-- 基础组件 --> <basic-container& ...

  7. STL string常用API

    #define _CRT_SECURE_NO_WARNINGS #include<iostream> #include<string> using namespace std; ...

  8. 【CTF隐写工具】binwalk工具使用方法

    工具简介 Binwalk 是一种快速.易于使用的工具,用于分析.逆向工程和提取固件映像. 工具环境 Linux Linux环境下安装 直接使用apt/yum进行安装 apt install binwa ...

  9. VuePress个人博客搭建

    vuepress概述 VuePress 由两部分组成:第一部分是一个极简静态网站生成器 (opens new window),它包含由 Vue 驱动的主题系统和插件 API,另一个部分是为书写技术文档 ...

  10. Windows下使用vscode连接Linux服务器进行C++代码运行与调试

    参考链接: vscode + SSH 配置 https://blog.csdn.net/irober/article/details/112724986 launch.json + tasks.jso ...