Solid Dominoes Tilings

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 235    Accepted Submission(s): 143

Problem Description
Dominoes are rectangular tiles with nice 2 × 1 and 1 × 2 sizes.

The tiling is called solid if it is not possible to split the tiled rectangle by a straight line, not crossing the interior of any tile. For example, on the picture below the tilings (a) and (b) are solid, while the tilings (c) and (d) are not.

Now the managers of the company wonder, how many different solid tilings exist for an m × n rectangle. Help them to find that out.

 
Input
The input file contains m and n(1≤m,n≤16).
 
Output
Output one integer number mod 1e9+7 - the number of solid tilings of m×n rectangle with 2 × 1 and 1 × 2 pavement tiles.
 
Sample Input
2 2
5 6
8 7
 
Sample Output
0
6
13514

Hint

All solid tilings for the 5×6 rectangle are provided on the picture below:

 
 
题意:
在经典的多米诺骨牌覆盖上加入限制:
覆盖后的骨牌不能被一条直线(横切、竖切)分成两部分。
求合法覆盖的方案数。
题解:
....这道题...以它的数据组数,除了在预处理出所有答案后打表,貌似没办法了.....
还有题解里面说的轮廓线dp是什么鬼?
不是状压dp一下就搞定了吗? 当然,这题比较好的一点,也是卡住我的一点就是其中的一个容斥过程。 1、首先状压dp出g[n][m]表示大小为n*m的时候,随意放置的方案数。
可以先深搜出所有的合法转移状态,存储到邻接表中。
显然合法转移数很少,那么,即使是在m=16时也只有100w种。
1<=m<=16的总转移数也只有200w种
所以这一步的总复杂度为O(n*总转移数) 2、接着,暴力来说,我们对于每个矩阵只要枚举矩阵的列的分割线,就能容斥了。
这样容斥出来的是列不能分割的情况。
行的如果在容斥一遍就不行了。
我一开始完全没有想到预处理答案打表。。。造成了思路的阻塞。。。
其实对于某种列的分割情况来说,
行的情况,是可以递推得:
令F[n]表示长为n的棋盘在枚举的宽度m且在枚举的切割方案下的行稳定方案。
那么显然
F[n] = g[n][m] - F[1]*g[n-1][m] - ..... -F[n - 1]*g[1][m]
即,利用第一条分割线做容斥。
这一步要O(n^2)
所以整个第二步打表过程要O(sigma(2^(m-1)*n*n), 1<= m <= 16)
即O(2^m * n^2) 从复杂度来说,我的方法应该是比较快的。
 const int N = , M = , MOD = 1e9 + ;
int head[ << N], son[M], nex[M], tot;
int ans[N][N], blocks[N];
int width;
int G[N][ << N], g[N][N]; inline int add(int x, int y) {
return ((x + y) % MOD + MOD) % MOD;
} inline int mul(int x, int y) {
return ((x * 1ll * y) % MOD + MOD) % MOD;
} inline void addEdge(int u, int v) {
son[tot] = v, nex[tot] = head[u];
head[u] = tot++;
} inline void searchNexState(int goalState, int nowState, int d) {
if(d == width) addEdge(goalState, nowState);
else if((goalState >> d) & ) {
if(d < width - && (goalState >> (d + ) & )) {
int nexState = nowState;
nexState |= ( << d) | ( << (d + ));
searchNexState(goalState, nexState, d + );
}
searchNexState(goalState, nowState, d + );
} else searchNexState(goalState, nowState | ( << d), d + );
} inline void getTransfer(int n) {
width = n, tot = ;
for(int i = ; i < ( << n); ++i) {
head[i] = -;
searchNexState(i, , );
}
// printf("%d\n", tot);
} inline void getG(int n, int m) {
for(int tab = head[( << m) - ]; tab != -; tab = nex[tab])
G[][son[tab]] = ;
for(int i = ; i < n; ++i) {
for(int u = ; u < ( << m); ++u) G[i + ][u] = ;
for(int u = ; u < ( << m); ++u) {
if(G[i][u]) {
for(int tab = head[u]; tab != -; tab = nex[tab])
G[i + ][son[tab]] = add(G[i + ][son[tab]], G[i][u]);
}
}
}
for(int i = ; i <= n; ++i) g[i][m] = G[i][( << m) - ];
} inline void search(int w, int now, int len) {
if(w >= width) {
blocks[len++] = now;
static int F[N], G[N];
for(int n = ; n <= ; ++n) {
int cnt = ;
for(int i = ; i < len; ++i) cnt = mul(cnt, g[n][blocks[i]]);
F[n] = G[n] = cnt;
for(int h = ; h < n; ++h)
F[n] = add(F[n], -mul(F[h], G[n - h]));
if(len & ) ans[n][width] = add(ans[n][width], F[n]);
else ans[n][width] = add(ans[n][width], -F[n]);
}
} else {
search(w + , now + , len);
blocks[len] = now;
search(w + , , len + );
}
} inline void init() {
for(int m = ; m <= ; ++m) {
width = m;
getTransfer(m);
getG(, m);
search(, , );
}
} int n, m;
int main() {
init();
while(scanf("%d%d", &n, &m) == ) printf("%d\n", ans[n][m]);
return ;
}

2016 Multi-University Training Contest 1 I. Solid Dominoes Tilings的更多相关文章

  1. 2016 Al-Baath University Training Camp Contest-1

    2016 Al-Baath University Training Camp Contest-1 A题:http://codeforces.com/gym/101028/problem/A 题意:比赛 ...

  2. 2016 Al-Baath University Training Camp Contest-1 E

    Description ACM-SCPC-2017 is approaching every university is trying to do its best in order to be th ...

  3. 2016 Al-Baath University Training Camp Contest-1 A

    Description Tourist likes competitive programming and he has his own Codeforces account. He particip ...

  4. 2016 Al-Baath University Training Camp Contest-1 J

    Description X is fighting beasts in the forest, in order to have a better chance to survive he's gon ...

  5. 2016 Al-Baath University Training Camp Contest-1 I

    Description It is raining again! Youssef really forgot that there is a chance of rain in March, so h ...

  6. 2016 Al-Baath University Training Camp Contest-1 H

     Description You've possibly heard about 'The Endless River'. However, if not, we are introducing it ...

  7. 2016 Al-Baath University Training Camp Contest-1 G

    Description The forces of evil are about to disappear since our hero is now on top on the tower of e ...

  8. 2016 Al-Baath University Training Camp Contest-1 F

    Description Zaid has two words, a of length between 4 and 1000 and b of length 4 exactly. The word a ...

  9. 2016 Al-Baath University Training Camp Contest-1 D

    Description X is well known artist, no one knows the secrete behind the beautiful paintings of X exc ...

随机推荐

  1. linux系统下sendmail的搭建

    学习鸟哥linux私房菜所得 sendmail 可以使用rpm -qa |grep sendmail来查看一下是否已安装sendmail-cf和sendmail 如果没有安装可用yum -y inst ...

  2. struts2+hibernate 项目实战:图书管理系统

    经典项目,练手必备. 图书管理系统 需求分析(大致,并不专业):1.需要有用户管理: 1.1 用户注册: 1.2 用户登录: 1.3 用户信息修改: 1.4 用户修改密码: 2.需要有书本管理: 2. ...

  3. Angular.js通过bootstrap实现经典的表单提交

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <link rel= ...

  4. Base64原理

    一.Base64编码由来 为什么会有Base64编码呢?因为有些网络传送渠道并不支持所有的字节,例如传统的邮件只支持可见字符的传送,像ASCII码的控制字符就 不能通过邮件传送.这样用途就受到了很大的 ...

  5. entiryFramework 事务控制

    1.在项目中添加System.Transactions命名空间 2.在代码中编写如下代码段: using (var trans = new TransactionScope()) { EF的代码 tr ...

  6. R语言——七月

    这两个月没有写什么代码.也没做什么大项目,基本就是对以前写的那个用ggplot2可视化数据的项目做一些增增补补,大部分技术难关都在ggplot2和R语言EXCEL处理这里解决并总结了.然后业余帮人修改 ...

  7. [Python] 机器学习库资料汇总

    声明:以下内容转载自平行宇宙. Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: ...

  8. 前端开发者进阶之函数柯里化Currying

    穆乙:http://www.cnblogs.com/pigtail/p/3447660.html 在计算机科学中,柯里化(英语:Currying),又译为卡瑞化或加里化,是把接受多个参数的函数变换成接 ...

  9. CF memsql Start[c]UP 2.0 B

    CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...

  10. 搭建 Windows Server 2003 + IIS6.0 + FastCGI + PHP5.3.29 + MySQL5.5.38 + Memcached1.2.6

    一.下载相关软件: 1.VC9运行库 即VISUAL C++ 2008 自PHP5.3.0开始,PHP提供VC2008编译版,需要安装VC++ 2008的运行库. [微软官方下载] http://ww ...