洛谷 P3182 [HAOI2016]放棋子(错排问题)
题面
题解
裸的错排问题
错排问题
百度百科:\(n\)个有序的元素应有\(n!\)个不同的排列,如若一个排列使得所有的元素不在原来的位置上,则称这个排列为错排;有的叫重排。如,1 2的错排是唯一的,即2 1。1 2 3的错排有3 1 2,2 3 1。这二者可以看作是1 2错排,3分别与1、2换位而得的。
错排公式:\(D(n) = (n-1)*(D(n-1)+D(n-2))\)
这里给出解释:
对于错排可以看作连线
A B ...... C
a b ...... c
\(A\)不能连\(a\),
同理,\(B\)不能连\(b\),\(C\)不能连\(c\)
考虑\(c\)连线
有\((n-1)\)种方案
假设\(A-c\)
那么考虑\(a\)如何连
1.如果\(C-a\)那么剩下的又是一个错排,即\(D(n-2)\)
2.如果\(a\)不连\(C\), 那么也可以构成一个错排,即\(D(n-1)\)
问题转换
如何转换成错排问题呢?
因为每行每列都只有一个棋子,且不能放在障碍上。
那么可以看作对障碍的错排
然后就是高精度板子了
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 10005;
struct node {
int s[N], cnt;
node(){
memset(s, 0, sizeof(s)); cnt = 0;
}
node operator + (node z) const {
node tmp;
tmp.cnt = max(cnt, z.cnt);
for (int i = 0; i < tmp.cnt; i++)
tmp.s[i] = s[i]+z.s[i];
for (int i = 0; i < tmp.cnt; i++)
if (tmp.s[i] > 9) {
tmp.s[i+1] += tmp.s[i]/10;
if (i+1 == tmp.cnt) tmp.cnt++;
tmp.s[i] %= 10;
}
return tmp;
}
node operator * (int z) const {
node tmp;
tmp.cnt = cnt;
for (int i = 0; i < tmp.cnt; i++)
tmp.s[i] = s[i]*z;
for (int i = 0; i < tmp.cnt; i++)
if (tmp.s[i] > 9) {
tmp.s[i+1] += tmp.s[i]/10;
if (i+1 == tmp.cnt) tmp.cnt++;
tmp.s[i] %= 10;
}
return tmp;
}
};
node D[210];
int main() {
int n;
read(n);
D[2].s[0] = D[2].cnt = D[1].cnt = 1;
for (int i = 3; i <= n; i++)
D[i] = (D[i-1]+D[i-2])*(i-1);
for (int i = D[n].cnt-1; i >= 0; i--)
printf("%d", D[n].s[i]);
return 0;
}
洛谷 P3182 [HAOI2016]放棋子(错排问题)的更多相关文章
- 洛谷P3182 [HAOI2016]放棋子
P3182 [HAOI2016]放棋子 题目描述 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要 ...
- 洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)
传送门 解题思路 不会错排问题的请移步——错排问题 && 洛谷 P1595 信封问题 这一道题其实就是求对于每一行的每一个棋子都放在没有障碍的地方的方案数. 因为障碍是每行.每列只有一 ...
- 【BZOJ4563】[Haoi2016]放棋子 错排+高精度
[BZOJ4563][Haoi2016]放棋子 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍 ...
- bzoj4563: [Haoi2016]放棋子(错排+高精)
4563: [Haoi2016]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 387 Solved: 247[Submit][Status] ...
- [洛谷P3158] [CQOI2011]放棋子
洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...
- 洛谷P3158 [CQOI2011]放棋子 组合数学+DP
题意:在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同颜色的棋子不能在同一行或者同一列.有多少祌方法? 解法:这道题不会做,太菜了qwq.题解是看洛谷大佬的. 设C是组合数, ...
- 洛谷P1595 信封问题 题解 错排问题
作者:zifeiy 标签:排列组合,错排问题 题目链接:https://www.luogu.org/problem/P1595 题目描述:某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都 ...
- JZYZOJ1544 [haoi2016T2]放棋子 错排公式 组合数学 高精度
http://172.20.6.3/Problem_Show.asp?ID=1544&a=ProbNF 看了题解才意识到原题有错排的性质(开始根本不知道错排是什么). 十本不同的书放在书架上. ...
- [Haoi2016]放棋子 题解
4563: [Haoi2016]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 440 Solved: 285[Submit][Status] ...
随机推荐
- laravel 模型关联之(多对多)
多对多 多对多就相当于一个专题Topic有多个文章,但是这多个文章又属于多个专题, 而且多对都必须有一个表是他们之间的关联关系表PostTopic Post表和Topic表之间没有直接的关联,而且通过 ...
- CSS 中的 px、em、rem 和 vh
区分 px:Pixel.像素. em:相对长度单位.继承父级元素的 font-size,值是相对于父级元素font-size的倍数. rem:Root em.相对于根元素(即 <html> ...
- Charles安装证书ssl proxying
1.找到工具栏上方的 help 按钮 2.help下面有一个 ssl proxying的选项,点击ssl proxying 选择里面的第三个:install charles root certific ...
- Introduction to Partial View
By Jignesh Trivedi on May 14, 2015 http://www.c-sharpcorner.com/UploadFile/ff2f08/partial-view-in-mv ...
- HTML总结之:HTML5的DOCTYPE 与 meta 属性介绍
HTML5头部常用介绍: [DOCTYPE html] 声明文档类型为HTML5文件. [meta标签] <meta> 元素可提供有关页面的元信息(meta-information), ...
- 人脸识别 人工智能(AI)
.. 如何通过AI实现 用我自己的数据集:能识别几张人脸.能否判断相似度.能否认出.
- 编写高质量代码改善C#程序的157个建议——建议12: 重写Equals时也要重写GetHashCode
建议12: 重写Equals时也要重写GetHashCode 除非考虑到自定义类型会被用作基于散列的集合的键值:否则,不建议重写Equals方法,因为这会带来一系列的问题. 如果编译上一个建议中的Pe ...
- delphi将图片转换成Base64编码函数
{************************************************************************** 名称: BaseImage 参数: fn: TF ...
- 搭建linux虚拟机
一.VMware 9 安装CentOS 7 -> 创建新虚拟机, 选择稍后安装操作系统 -> 选择Linux系统Centos 64位 -> 填写虚拟机名称, 选择虚拟机安 ...
- springboot项目部署运行(后台);端口被占用;
打包: mvn clean package -Pprod -Dmaven.test.skip=true -Pprod 使用生产环境配置: -DskipTests,不执行测试用例,但编译测试用例类生成相 ...