POJ1236_A - Network of Schools _强连通分量::Tarjan算法
| Time Limit: 1000MS | Memory Limit: 10000K |
Description
You are to write a program that computes the minimal number of
schools that must receive a copy of the new software in order for the
software to reach all schools in the network according to the agreement
(Subtask A). As a further task, we want to ensure that by sending the
copy of new software to an arbitrary school, this software will reach
all schools in the network. To achieve this goal we may have to extend
the lists of receivers by new members. Compute the minimal number of
extensions that have to be made so that whatever school we send the new
software to, it will reach all other schools (Subtask B). One extension
means introducing one new member into the list of receivers of one
school.
Input
first line contains an integer N: the number of schools in the network
(2 <= N <= 100). The schools are identified by the first N
positive integers. Each of the next N lines describes a list of
receivers. The line i+1 contains the identifiers of the receivers of
school i. Each list ends with a 0. An empty list contains a 0 alone in
the line.
Output
program should write two lines to the standard output. The first line
should contain one positive integer: the solution of subtask A. The
second line should contain the solution of subtask B.
Sample Input
5
2 4 3 0
4 5 0
0
0
1 0
Sample Output
1
2
题意
有向图上有 N 个点,若干有向边。
第一问:至少给几个点传递信息,才能保证信息传遍整个图。
第二问:至少添加几条边,才能使任意选择点,都能传遍整个图。
思路
强连通分量的裸题。
强连通分量内的任意一点收到消息,内部其他各点必定都能收到消息。因此,可以把每个强连通分量缩成一个点。只需要考察入度为 0 的强连通分量的个数,就是第一问的答案。
对于第二问,是把图连接成一个强连通分量,同样可以在缩点后的图中操作。这里的做法是统计图中入度为0、出度为0的强连通分量的个数,取较大值即为第二问的答案。 本题中原图只有一个强连通分量的情况需要特判。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector> using namespace std; const int maxn = + ; int N;
int In[maxn], Out[maxn]; /***************************Tarjan算法模板***************************/
vector<int> G[maxn];
int Mark[maxn], Root[maxn], Stack[maxn];//时间戳,根(当前分量中时间戳最小的节点),栈
bool Instack[maxn]; //是否在栈中标记
int Ssc[maxn]; //每个节点所在的强连通分量的编号
int Index, Ssc_n, Top; //搜索时用的时间戳,强连通分量总数,栈顶指针 void Tarjan(int u) //u 当前搜索到的点
{
Mark[u] = Root[u] = ++ Index; //每找到一个点,对时间戳和根初始化
Stack[Top ++] = u; //压栈
Instack[u] = true; //在栈中标记 int v; for(int i= ; i< G[u].size(); i++) //向下搜索
{
v = G[u][i];
if(Mark[v] == ) //没到过的点
{
Tarjan(v); //先向下搜索
if(Root[u] > Root[v]) Root[u] = Root[v];//更新根
}
else if(Instack[v] && Root[u] > Mark[v]) Root[u] = Mark[v]; //到过的点且点仍在栈中,试着看这个点能不能成为根
}
/*对当前点的搜索结束*/
if(Mark[u] == Root[u]) //当前点本身时根
{
Ssc_n ++; //更新强连通分量数 do{ //栈中比它后入栈的元素在以它为根的强连通分量中
v = Stack[-- Top];
Instack[v] = false;
Ssc[v] = Ssc_n;//把同一个强连通分支的点做上相同标记
}while(v != u); //直到它自己
}
} void SSC()
{
memset(Mark, , sizeof Mark); //初始化时间戳和栈内标记
memset(Instack, false, sizeof Instack);
Index = Ssc_n = Top = ; //初始化时间戳,强连通分量数,栈顶指针 for(int i= ; i<= N; i++) //保证图上所有点都访问到
if(Mark[i] == ) Tarjan(i);
}
/***************************Tarjan算法模板***************************/ int main()
{
//freopen("in.txt", "r", stdin); scanf("%d", &N);
for(int i= ; i<= N; i++)
{
int x;
while(scanf("%d", &x), x)
G[i].push_back(x);
} SSC(); if(Ssc_n == ) //只有一个强连通分量的情况
{
cout << "1\n0\n";
return ;
} memset(In, , sizeof In); //求每个强连通分量的入度和出度
memset(Out, , sizeof Out);
for(int u= ; u<= N; u++)
{
for(int i= ; i< G[u].size(); i++)
{
int v = G[u][i];
if(Ssc[u] != Ssc[v])//u,v两点不在同一个强连通分支
Out[Ssc[u]] ++, In[Ssc[v]] ++;
}
} int S1 = , S2 = ;//找入度为0、出度为0的点的数目
for(int i= ; i<= Ssc_n; i++)
{
if(In[i] == ) S1 ++;
if(Out[i] == ) S2 ++;
} cout << S1 << endl << max(S1, S2) << endl; return ;
}
POJ1236_A - Network of Schools _强连通分量::Tarjan算法的更多相关文章
- POJ 1236 Network of Schools(强连通分量/Tarjan缩点)
传送门 Description A number of schools are connected to a computer network. Agreements have been develo ...
- 有向图强连通分量Tarjan算法
在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间 ...
- poj1236 Network of Schools【强连通分量(tarjan)缩点】
转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4316263.html ---by 墨染之樱花 [题目链接]http://poj.org/pr ...
- poj 1236 Network of Schools(又是强连通分量+缩点)
http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Su ...
- poj 1236 Network of Schools (强连通分量+缩点)
题目大概: 每个学校都可以把软件复制好,交给它名单上的学校. 问题A:把软件复制成几份,然后交给不同的学校,所有学校才能够都有软件. 问题B:添加几条边,能使得这个图变成强连通图. 思路: 找出所有的 ...
- POJ 1236 Network of Schools(强连通分量)
POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...
- 有向图强连通分量 Tarjan算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- [有向图的强连通分量][Tarjan算法]
https://www.byvoid.com/blog/scc-tarjan 主要思想 Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当前搜索树中未处理的 ...
- 图的连通性:有向图强连通分量-Tarjan算法
参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...
随机推荐
- 使用文档碎片(DocumentFragments)追加DOM元素
标签(空格分隔): JavaScript DocumentFragment接口表示一个没有父级文件的最小文档对象.它被当做一个轻量版的Document使用,用于存储已排好版的或尚未打理好格式XML片段 ...
- PHP:使用php,循环html中的select标签与Php数据
select标签,我们都知道是下拉列表,这里,我们使用foreach循环,将select中的数据进行输出 例子: 1.数据表:mimi_article,表中有个字段,为1或0,表示着是或否 2.通过p ...
- C#转Java之路之二:多线程原子变量
多线程操作会带来不一致性,为了实现一直性.我们可以用关键字:synchronized同步对象或者volatile轻量级.内存可见性. 两个关键字使用对比: 1.synchronized比较重,属于悲观 ...
- android Listview 软引用SoftReference异步加载图片
首先说一下,android系统加载大量图片系统内存溢出的3中解决方法: (1)从网络或本地加载图片的时候,只加载缩略图.这个方法的确能够少占用不少内存,可是它的致命的缺点就是,因为加载的是缩略图,所以 ...
- Android(java)学习笔记51:ScrollView用法
1. 理论部分 (1)ScrollView和HorizontalScrollView是为控件或者布局添加滚动条 (2)上述两个控件只能有一个孩子,但是它并不是传统意义上的容器 (3)上述两个控件可以互 ...
- 前端:Bootstrap框架
一,bootstrap介绍 Bootstrap是Twitter开源的基于HTML.CSS.JavaScript的前端框架. 它是为实现快速开发Web应用程序而设计的一套前端工具包. 它支持响应式布局, ...
- HDU 1853 MCMF
题意:给定一个有向带权图,使得每一个点都在一个环上,而且权之和最小. 分析:每个点在一个环上,入度 = 出度 = 1,拆点入点,出点,s到所有入点全部满载的最小费用MCMF; #include < ...
- 动态规划(DP),Human Gene Functions
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1027 http://poj.org/problem?id=108 ...
- CF549BLooksery Party题解
题目描述 The Looksery company, consisting of nn staff members, is planning another big party. Every empl ...
- HDU 1575 Tr A 【矩阵经典2 矩阵快速幂入门】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1575 Tr A Time Limit: 1000/1000 MS (Java/Others) Me ...