用途:

单源最短路径,不可以处理含负权边的图但可以用来判断是否存在负权回路;

复杂度O(kE) 【k <= 2, E 为边数】;

算法核心:

Bellman-Ford 算法的优化,实质与前算法一样,但优化的关键之处在于:只有那些前面被松弛过的点才有可能去松弛它们的邻接点。

模板(已优化):

#include <map>
#include <set>
#include <queue>
#include <deque>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define INF 0x3f3f3f3f
using namespace std; const int MAXN = 1e3 + ; struct edge
{
int t, nxt, cost;
}; edge e[MAXN*MAXN];
int head[MAXN], cnt;
int dis[MAXN];
bool vis[MAXN];
int N, M; void init()
{
memset(head, -, sizeof(head));
memset(e, , sizeof(e));
memset(vis, false, sizeof(vis));
fill(dis, dis+N+, INF);
cnt = ;
} void add(int from, int to, int weight)
{
e[cnt].t = to, e[cnt].cost = weight, e[cnt].nxt = head[from], head[from] = cnt++;
} void debug()
{
for(int i = ; i <= N; i++)
{
printf("%d ", i);
for(int k = head[i]; k != -; k = e[k].nxt)
printf(" -> %d ", e[k].t);
puts("");
}
puts("");
} void SPFA(int s)
{
deque<int> que;
que.push_back(s);
dis[s] = ;
vis[s] = true; while(!que.empty())
{
int u = que.front(); que.pop_front();
vis[u] = false; for(int i = head[u]; i != -; i = e[i].nxt)
{
int v = e[i].t;
if(dis[v] > dis[u] + e[i].cost)
{
dis[v] = dis[u] + e[i].cost;
if(!vis[v])
{
vis[v] = true;
if(!que.empty() && dis[v] < dis[que.front()])
que.push_front(v);
else
que.push_back(v);
}
}
}
}
} int main()
{
int a, b, c;
while(~scanf("%d%d", &M, &N)){
init();
while(M--)
{
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
add(b, a, c);
} ///debug(); SPFA(); printf("%d\n", dis[N]);
}
return ;
}

最短路算法——SPFA的更多相关文章

  1. 最短路算法 -- SPFA模板

    一.算法步骤 建立一个队列,初始时队列里只有起始点,再建立一个数组记录起始点到所有点的最短路径(该数组的初始值要赋为极大值,该点到它本身的路径赋为0,下面的模板中该数组为dist[]).然后执行松弛操 ...

  2. 最短路算法--SPFA+嵌套map

    hdu 2066   #include<iostream> #include<cstdio> #include<cstring> #include<queue ...

  3. 模板C++ 03图论算法 1最短路之单源最短路(SPFA)

    3.1最短路之单源最短路(SPFA) 松弛:常听人说松弛,一直不懂,后来明白其实就是更新某点到源点最短距离. 邻接表:表示与一个点联通的所有路. 如果从一个点沿着某条路径出发,又回到了自己,而且所经过 ...

  4. 【最短路算法】Dijkstra+heap和SPFA的区别

    单源最短路问题(SSSP)常用的算法有Dijkstra,Bellman-Ford,这两个算法进行优化,就有了Dijkstra+heap.SPFA(Shortest Path Faster Algori ...

  5. 最短路算法详解(Dijkstra/SPFA/Floyd)

    新的整理版本版的地址见我新博客 http://www.hrwhisper.me/?p=1952 一.Dijkstra Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路.所以Dijkst ...

  6. 最短路算法(floyed+Dijkstra+bellman-ford+SPFA)

    最短路算法简单模板 一.floyed算法 首先对于floyed算法来说就是最短路径的动态规划解法,时间复杂度为O(n^3) 适用于图中所有点与点之间的最短路径的算法,一般适用于点n较小的情况. Flo ...

  7. 算法专题 | 10行代码实现的最短路算法——Bellman-ford与SPFA

    今天是算法数据结构专题的第33篇文章,我们一起来聊聊最短路问题. 最短路问题也属于图论算法之一,解决的是在一张有向图当中点与点之间的最短距离问题.最短路算法有很多,比较常用的有bellman-ford ...

  8. 近十年one-to-one最短路算法研究整理【转】

    前言:针对单源最短路算法,目前最经典的思路即标号算法,以Dijkstra算法和Bellman-Ford算法为根本演进了各种优化技术和算法.针对复杂网络,传统的优化思路是在数据结构和双向搜索上做文章,或 ...

  9. 图上最短路(Dijkstra, spfa)

    单源最短路径 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出发点的编号. 接下来 ...

随机推荐

  1. MySql——安装与配置与启动和停止

    在Linux上安装mysql数据库,我们可以去其官网上下载mysql数据库的rpm包,http://dev.mysql.com/downloads/mysql/5.6.html#downloads,大 ...

  2. ubuntu java开发环境jdk安装

    1. 下载JDK6安装包,我的为32位系统所以选择jdk-6u35-linux-i586.bin 下载地址:http://www.oracle.com/technetwork/java/javase/ ...

  3. javascript中for in与in的用法

    1.For...In 声明用于对数组或者对象的属性进行循环/迭代操作. 对于数组 ,迭代出来的是数组元 素,对于对象 ,迭代出来的是对象的属性: var x var mycars = new Arra ...

  4. Java学习第二十五天

    1:如何让Netbeans的东西Eclipse能访问. 在Eclipse中创建项目,把Netbeans项目的src下的东西给拿过来即可. 注意:修改项目编码为UTF-8 2:GUI(了解) (1)用户 ...

  5. HttpServletRequest的获取客户端真实IP

    摘自:http://chenyoulu.diandian.com/post/2012-11-14/40042540378 request方法客户端IP: request.getRemoteAddr() ...

  6. linq之Capacity(转载)

    出处:博客园 作者:mumuliang 连接:http://www.cnblogs.com/mumuliang/p/3914425.html Capacity 在.NET中List的容量应该只是受到硬 ...

  7. VS2015自定义类模板的方法

    在前一段时间忽然想给自己电脑上的vs新建类的时候添加一个自定义个注释,但是在网上搜了很久都是说vs2012之类的方法系统也都是win7.XP之类的独独没有win8的.故此自己不断的尝试修改发现方法如下 ...

  8. .NET开源工作流RoadFlow-表单设计-子表

    子表即明细表 从表:与主表对应在子表. 从表主键:从表的主键. 主表字段:主表中与从来关联的字段,一般为主表的主键. 与主表关联字段:从表中与主表关联的字段. 选择之后即可在下面从表字段列表中设置每个 ...

  9. Android 解决Glide 加载图片缓慢(第一次加载不出来图片)的Bug

  10. Html5 突破微信限制实现大文件分割上传

    先来前端代码 <!DOCTYPE html> <html> <head> <meta name="viewport" content=&q ...