A. Search for Pretty Integers

You are given two lists of non-zero digits.

Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer?

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 9) — the lengths of the first and the second lists, respectively.

The second line contains n distinct digits a1, a2, ..., an (1 ≤ ai ≤ 9) — the elements of the first list.

The third line contains m distinct digits b1, b2, ..., bm (1 ≤ bi ≤ 9) — the elements of the second list.

Output

Print the smallest pretty integer.

Examples
input
2 3
4 2
5 7 6
output
25
input
8 8
1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1
output
1
Note

In the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list.

In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer.

题意:找出两个数字,在两个数组都出现过,要求最小,注意,有可能只有一位。

#include <bits/stdc++.h>

using namespace std;

int a[];
int b[]; int main()
{
int n,m;
scanf("%d%d",&n,&m); for(int i = ; i < n; i++) scanf("%d",&a[i]);
for(int i = ; i < m; i++) scanf("%d",&b[i]); sort(a,a+n);
sort(b,b+m); if(a[]==b[]) {
printf("%d\n",a[]);
}
else { bool flag = false;
int ans = ;
for(int i = ; i < n; i++) {
for(int j = ; j < m; j++) {
if(a[i]==b[j]) {
flag = true;
ans = a[i];
break;
}
}
if(flag)
break;
} if(flag)
printf("%d\n",ans);
else printf("%d%d\n",min(a[],b[]),max(a[],b[])); } return ;
}
B. Maximum of Maximums of Minimums

You are given an array a1, a2, ..., an consisting of n integers, and an integer k. You have to split the array into exactly k non-empty subsegments. You'll then compute the minimum integer on each subsegment, and take the maximum integer over the k obtained minimums. What is the maximum possible integer you can get?

Definitions of subsegment and array splitting are given in notes.

Input

The first line contains two integers n and k (1 ≤ k ≤ n ≤  105) — the size of the array a and the number of subsegments you have to split the array to.

The second line contains n integers a1,  a2,  ...,  an ( - 109  ≤  ai ≤  109).

Output

Print single integer — the maximum possible integer you can get if you split the array into k non-empty subsegments and take maximum of minimums on the subsegments.

Examples
input
5 2
1 2 3 4 5
output
5
input
5 1
-4 -5 -3 -2 -1
output
-5
Note

A subsegment [l,  r] (l ≤ r) of array a is the sequence al,  al + 1,  ...,  ar.

Splitting of array a of n elements into k subsegments [l1, r1], [l2, r2], ..., [lk, rk] (l1 = 1, rk = nli = ri - 1 + 1 for all i > 1) is k sequences (al1, ..., ar1), ..., (alk, ..., ark).

In the first example you should split the array into subsegments [1, 4] and [5, 5] that results in sequences (1, 2, 3, 4) and (5). The minimums are min(1, 2, 3, 4) = 1 and min(5) = 5. The resulting maximum is max(1, 5) = 5. It is obvious that you can't reach greater result.

In the second example the only option you have is to split the array into one subsegment [1, 5], that results in one sequence ( - 4,  - 5,  - 3,  - 2,  - 1). The only minimum is min( - 4,  - 5,  - 3,  - 2,  - 1) =  - 5. The resulting maximum is  - 5.

题意:给定一个数组,划分为k个区间,最大化,区间内最小的数字的最大值。有点绕。

k > 2 ans = maxx

k = 1 ans = minx

k==2 枚举

#include <bits/stdc++.h>

using namespace std;

const int maxn = 1e5+;

int a[maxn];
int d[maxn];
int d2[maxn]; int main() {
// freopen("in.txt","r",stdin);
int n,k;
scanf("%d%d",&n,&k); for(int i = ; i < n; i++)
d[i] = d2[i] = 1e9+; int maxx = -(1e9 + );
int minx = 1e9 + ;
for(int i = ; i < n; i++) {
scanf("%d",&a[i]);
minx = min(minx,a[i]);
maxx = max(maxx,a[i]);
} d[] = a[];
for(int i = ; i < n; i++) {
d[i] = min(d[i-],a[i]);
} d2[n-] = a[n-];
for(int i = n-; i >=; i--) {
d2[i] = min(d2[i+],a[i]);
} if(k==) {
printf("%d\n",minx);
} else if(k>)
printf("%d\n",maxx);
else {
if(a[]==maxx||a[n-]==maxx)
printf("%d\n",maxx);
else {
int ans = -(1e9+);
for(int i = ; i < n-; i++) {
int tmp = max(d[i],d2[i+]);
ans = max(ans,tmp);
}
printf("%d\n",ans);
}
} return ;
}
C. Maximum splitting

You are given several queries. In the i-th query you are given a single positive integer ni. You are to represent ni as a sum of maximum possible number of composite summands and print this maximum number, or print -1, if there are no such splittings.

An integer greater than 1 is composite, if it is not prime, i.e. if it has positive divisors not equal to 1 and the integer itself.

Input

The first line contains single integer q (1 ≤ q ≤ 105) — the number of queries.

q lines follow. The (i + 1)-th line contains single integer ni (1 ≤ ni ≤ 109) — the i-th query.

Output

For each query print the maximum possible number of summands in a valid splitting to composite summands, or -1, if there are no such splittings.

Examples
input
1
12
output
3
input
2
6
8
output
1
2
input
3
1
2
3
output
-1
-1
-1
Note

12 = 4 + 4 + 4 = 4 + 8 = 6 + 6 = 12, but the first splitting has the maximum possible number of summands.

8 = 4 + 4, 6 can't be split into several composite summands.

1, 2, 3 are less than any composite number, so they do not have valid splittings.

题意:给定一个数字n,求最多可以由多少个合数相加组成。

分析:尽可能的用4去组合。

#include <bits/stdc++.h>

using namespace std;

int a[] = {,-,-,-,,-,,-,,,,-,,,,};

int main()
{
int q;
cin>>q;
while(q--) {
int n;
scanf("%d",&n);
if(n<=) {
printf("%d\n",a[n]);
continue;
}
int k = n%;
if(k==) printf("%d\n",n/);
if(k==) {
printf("%d\n",(n-)/+);
}
if(k==) {
printf("%d\n",(n-)/+);
}
if(k==) {
printf("%d\n",(n-)/+);
}
}
return ;
}

UVA 920

题目很形象,给定n个点坐标,从左往右的平行光线照射山峰,求图中红色的投影长度和。

分析:模拟照射过程,从右往左,只有下一个点较高的时候,才会有红色线段,而且此时的山峰不会再出现影子,维护一个尾部指针,指向当前可能产生影子的山峰,然后就是求影子长度了,投影长度和前一个点的角度有关,计算公式推导一下就行了。

#include <bits/stdc++.h>

using namespace std;

const int maxn = ;

struct Node {
double x,y;
bool operator < (const Node& rhs) const {
return x < rhs.x;
}
}nodes[maxn];

int n;

double dist(int i,int j) {
double x = nodes[i].x - nodes[j].x;
double y = nodes[i].y - nodes[j].y;
return sqrt(x*x+y*y);
}

int main()
{
//freopen("in.txt","r",stdin);
int t; scanf("%d",&t);
while(t--) {
scanf("%d",&n);

for(int i = ; i < n; i++) scanf("%lf%lf",&nodes[i].x,&nodes[i].y);
sort(nodes,nodes+n);

int last = n-;

double sum = ;
for(int i = n-; i >=; i--) {
if(nodes[i].y>nodes[last].y) {
sum += dist(i,i+)*( (nodes[i].y-nodes[last].y)/ (nodes[i].y-nodes[i+].y) );
last = i;
}
}

printf("%.2lf\n",sum);

}

return ;
}

ACM-ICPC (10/15) Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2)的更多相关文章

  1. Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2)

    A. Search for Pretty Integers 题目链接:http://codeforces.com/contest/872/problem/A 题目意思:题目很简单,找到一个数,组成这个 ...

  2. Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2) D. Something with XOR Queries

    地址:http://codeforces.com/contest/872/problem/D 题目: D. Something with XOR Queries time limit per test ...

  3. Codeforces Round #440 (Div. 1, based on Technocup 2018 Elimination Round 2) C - Points, Lines and Ready-made Titles

    C - Points, Lines and Ready-made Titles 把行列看成是图上的点, 一个点(x, y)就相当于x行 向 y列建立一条边, 我们能得出如果一个联通块是一棵树方案数是2 ...

  4. Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2) C. Maximum splitting

    地址: 题目: C. Maximum splitting time limit per test 2 seconds memory limit per test 256 megabytes input ...

  5. Codeforces Round #434 (Div. 2, based on Technocup 2018 Elimination Round 1)&&Codeforces 861B Which floor?【枚举,暴力】

    B. Which floor? time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...

  6. Codeforces Round #434 (Div. 2, based on Technocup 2018 Elimination Round 1)&&Codeforces 861A k-rounding【暴力】

    A. k-rounding time limit per test:1 second memory limit per test:256 megabytes input:standard input ...

  7. Codeforces Round #434 (Div. 2, based on Technocup 2018 Elimination Round 1)

    A. k-rounding 题目意思:给两个数n和m,现在让你输出一个数ans,ans是n倍数且末尾要有m个0; 题目思路:我们知道一个数末尾0的个数和其质因数中2的数量和5的数量的最小值有关系,所以 ...

  8. 【模拟】 Codeforces Round #434 (Div. 1, based on Technocup 2018 Elimination Round 1) C. Tests Renumeration

    题意:有一堆数据,某些是样例数据(假设X个),某些是大数据(假设Y个),但这些数据文件的命名非常混乱.要你给它们一个一个地重命名,保证任意时刻没有重名文件的前提之下,使得样例数据命名为1~X,大数据命 ...

  9. Codeforces Round #434 (Div. 2, based on Technocup 2018 Elimination Round 1)&&Codeforces 861C Did you mean...【字符串枚举,暴力】

    C. Did you mean... time limit per test:1 second memory limit per test:256 megabytes input:standard i ...

随机推荐

  1. Linux-密码复杂度限制

    前言 设置一个复杂的密码,可以有效的提升系统的安全性.在Linux上有PAM(Pluggable Authentication Modules)里面有一个pam_cracklib.so来控制密码的复杂 ...

  2. 解决matplotlib绘图中文乱码

    # 指定默认字体 下面三条代码用来解决绘图中出现的乱码 matplotlib.rcParams['font.sans-serif'] = ['SimHei'] matplotlib.rcParams[ ...

  3. Java基础19-封装、方法重载、构造方法(构造函数)

    1.封装 封装就是把不想或者不该告诉别人的东西隐藏起来,把可以告诉别人的公开 做法:修改属性的访问权限来限制对属性的访问.并为每一个属性创建一对取值方法和赋值方法,用于对这些属性的访问 class D ...

  4. Mixamo Fuse10分钟创建角色

    http://edu.manew.com/course/132 太6了

  5. core核心模块

    5. core核心模块 核心模块会通过compiler模块提供的调用compiler的功能, 将用户的输入转为VM直接的输入 编译模块用来编译, 而核心模块用来执行 在core.h文件中 // 不需要 ...

  6. mysql 存储过程(proceduce)查询一个表的结果插入另外一个表

    公司的时间戳存证业务,对发版过程中间数据处理需要用到存储过程.对此做一个简短记录,以免遗忘. DROP procedure record_timestamp_deal ; ##创建存储过程 creat ...

  7. 使用setInterval函数改变网页背景的颜色

    var icolor=0; var iNum=256; var iID=setInterval(setbgColor, 500); function setbgColor() { body.backg ...

  8. [转]Newtonsoft.Json高级用法

    本文转自:http://www.cnblogs.com/yanweidie/p/4605212.html 手机端应用讲究速度快,体验好.刚好手头上的一个项目服务端接口有性能问题,需要进行优化.在接口多 ...

  9. Javascript 简单实现鼠标拖动DIV

    http://zhangbo-peipei-163-com.iteye.com/blog/1740078 比较精简的Javascript拖动效果函数代码 http://www.jb51.net/art ...

  10. 前端参数统一校验工具类ValidParamUtils

    1,前端参数不可信,对于后端开发人员来说应该是一条铁律,所以对于前端参数的校验,必不可少,而统一的前端参数校验工具,对我们进行参数校验起到事半功倍的效果 2,统一参数校验工具ValidParamUti ...