loj #6122. 「网络流 24 题」航空路线问题
#6122. 「网络流 24 题」航空路线问题
题目描述
给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线。现要求找出一条满足下述限制条件的且途经城市最多的旅行路线。
- 从最西端城市出发,单向从西向东途经若干城市到达最东端城市,然后再单向从东向西飞回起点(可途经若干城市)。
- 除起点城市外,任何城市只能访问一次。
对于给定的航空图,试设计一个算法找出一条满足要求的最佳航空旅行路线。
输入格式
第一行有两个正整数 NNN 和 VVV,NNN 表示城市数,VVV 表示直飞航线数。
接下来的 NNN 行中每一行是一个城市名,可乘飞机访问这些城市。城市名出现的顺序是从西向东。也就是说,设 i,ji,ji,j 是城市表列中城市出现的位置次序,当 i>ji>ji>j 时,表示 城市 iii在城市 jjj 的东边,而且不会有两个城市在同一条经线上。城市名是一个长度不超过 151515 的字符串,串中的字符可以是大小写字母或阿拉伯数字。例如,AGR34\text{AGR34}AGR34 或 BEL4\text{BEL4}BEL4。
再接下来的 VVV 行中,每行有两个城市名,中间用空格隔开,如 city1 city2\text{city1 city2}city1 city2 表示 city1\text{city1}city1 到 city2\text{city2}city2 有一条直通航线,从 city2\text{city2}city2 到 city1\text{city1}city1 也有一条直通航线。
输出格式
输出最佳航空旅行路线。
第一行是旅行路线中所访问的城市总数 MMM。
接下来的 M+1M+1M+1 行是旅行路线的城市名,每行一个。首先是出发城市名,然后按访问顺序列出其它城市名。注意,最后一行(终点城市)的城市名必然是出发城市名。如果有多组最优解,输出任意一组均可;如果问题无解,则输出 No Solution!。
样例
样例输入
8 9
Vancouver
Yellowknife
Edmonton
Calgary
Winnipeg
Toronto
Montreal
Halifax
Vancouver Edmonton
Vancouver Calgary
Calgary Winnipeg
Winnipeg Toronto
Toronto Halifax
Montreal Halifax
Edmonton Montreal
Edmonton Yellowknife
Edmonton Calgary
样例输出
7
Vancouver
Edmonton
Montreal
Halifax
Toronto
Winnipeg
Calgary
Vancouver
数据范围与提示
对于所有数据,N<100N < 100N<100
#include<iostream>
#include<cstdio>
#include<cstring>
#include<map>
#include<queue>
#define maxn 110
using namespace std;
int dis[maxn],head[maxn],n,m,S,T,num=,ans;
bool v[maxn],vis[maxn];
map<string,int>p;
struct node{int to,pre,v,w;}e[maxn*maxn];
struct Node{int e,v;}pre[maxn*maxn];
string pp[maxn],s1,s2;
void Insert(int from,int to,int v,int w){
e[++num].to=to;e[num].v=v;e[num].w=w;e[num].pre=head[from];head[from]=num;
e[++num].to=from;e[num].v=;e[num].w=-w;e[num].pre=head[to];head[to]=num;
}
bool spfa(int x){
memset(dis,,sizeof(dis));
memset(vis,,sizeof(vis));
queue<int>q;
q.push(x);vis[x]=;
while(!q.empty()){
int now=q.front();q.pop();vis[now]=;
for(int i=head[now];i;i=e[i].pre){
int to=e[i].to;
if(e[i].v>&&dis[now]+e[i].w>dis[to]){
dis[to]=dis[now]+e[i].w;
pre[to].e=i;pre[to].v=now;
if(!vis[to]){vis[to]=;q.push(to);}
}
}
}
return dis[T];
}
int max_flow(int f){
int res=,d;
while(f){
if(!spfa(S))return -;
d=f;
for(int i=T;i!=S;i=pre[i].v)d=min(e[pre[i].e].v,d);
res+=d*dis[T];f-=d;
for(int i=T;i!=S;i=pre[i].v){
e[pre[i].e].v-=d;
e[pre[i].e^].v+=d;
}
}
return res;
}
int main(){
scanf("%d%d",&n,&m);
S=,T=n*;
for(int i=;i<=n;i++){
cin>>pp[i];
p[pp[i]]=i;
}
for(int i=;i<=m;i++){
cin>>s1>>s2;
int a1=p[s1],a2=p[s2];
if(a1>a2)swap(a1,a2);
if(a1==&&a2==n)Insert(a1+n,a2,,);
else Insert(a1+n,a2,,);
}
Insert(S,+n,,);
Insert(n,T,,);
for(int i=;i<n;i++)Insert(i,i+n,,);
ans=max_flow();
if(ans<){
puts("No Solution!");
return ;
}
printf("%d\n",ans-);
cout<<pp[]<<endl;
for(int i=head[S+n];i;i=e[i].pre)
if(!e[i].v&&!(i&)){
int to=e[i].to;
while(to){
cout<<pp[to]<<endl;
v[to]=;
int j;
for(j=head[to+n],to=;j;j=e[j].pre)
if(!e[j].v&&!(j&)){
to=e[j].to;break;
}
}
break;
}
for(int i=head[T-n];i;i=e[i].pre)
if(!e[i^].v&&(i&)&&!v[e[i].to-n]){
int to=e[i].to-n;
while(to){
cout<<pp[to]<<endl;
v[to]=;
int j;
for(j=head[to],to=;j;j=e[j].pre)
if(!e[j^].v&&(j&)){
to=e[j].to-n;break;
}
}
break;
}
}
loj #6122. 「网络流 24 题」航空路线问题的更多相关文章
- 【刷题】LOJ 6122 「网络流 24 题」航空路线问题
题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单向从西向东途经若干城市到达最东端城市,然后再单向 ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
- [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划
[luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...
- [LOJ#6002]「网络流 24 题」最小路径覆盖
[LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- loj #6013. 「网络流 24 题」负载平衡
#6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...
- loj #6121. 「网络流 24 题」孤岛营救问题
#6121. 「网络流 24 题」孤岛营救问题 题目描述 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂, ...
- loj #6226. 「网络流 24 题」骑士共存问题
#6226. 「网络流 24 题」骑士共存问题 题目描述 在一个 n×n\text{n} \times \text{n}n×n 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上 ...
- [loj #6003]「网络流 24 题」魔术球 二分图最小路径覆盖,网络流
#6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...
随机推荐
- python's twenty-sixth day for me 模块
configparser 模块: 该模块适用于配置文件的格式与windows ini文件类似,可以包含一个或多个节(section),每个节可以有多个参数(键 = 值). 创建文件: # 创建文件 i ...
- 使用原生js自定义内置标签
使用原生js自定义内置标签 效果图 代码 <!DOCTYPE html> <html lang="en"> <head> <meta ch ...
- VMWARE三种网络配置
由于linux目前很热门,越来越多的人在学习linux,但是买一台服务放家里来学习,实在是很浪费.那么如何解决这个问题?虚拟机软件是很好的选择,常用的虚拟机软件有vmware workstations ...
- openGL 变换06
变换 使用(多个)矩阵(Matrix) 对象可以更好的变换(Transform)一个物体. 向量 向量最基本的定义就是一个方向. 或者说 向量有一个方向(Direction)和大小(Magnitude ...
- url的进行传参拼接
在项目中会遇到把这一个页面的参数传到下一页里面,这里我在项目中用到一个例证(大神就绕过吧嘻嘻):url: '/pages/buy/submitOrder/submitOrder?sku_id=' + ...
- HTML_基础篇v2
网站图片页面显示案例 1.需求分析 需要在浏览器中显示2张图片信息,效果如下: 2.技术分析 [图片标签]<img /> 属性: src:指图片的位置(路径) 路径的写法:绝对路径和相对路 ...
- android 4.0.4系统下实现apk的静默安装和启动
转 android 4.0.4系统下实现apk的静默安装和启动 分类: Android 2013-02-14 14:13 1762人阅读 评论(10) 收藏 举报 最近在android 4.0.4系统 ...
- Spring整合Junit4进行单元测试
一. 添加依赖包(maven) <dependency> <groupId>junit</groupId> <artifactId>junit</ ...
- ajax请求参数中含有特殊字符"#"的问题 (另附上js编码解码的几种方法)
使用ajax向后台提交的时候 由于参数中含有# 默认会被截断 只保留#之前的字符 json格式的字符串则不会被请求到后台的action 可以使用encodeURIComponent在前台进行编码, ...
- ASP.NET MVC 和 WebForm的权限控制
今天主要讲一下对于ASP.NET的页面级权限控制 数据结构:用户表.角色表.权限表.角色权限派生表 为用户添加权限的数据配置后, 自定义类对MVC继承Controller 对其内置方法Initiali ...