After the end of the truck drivers' strike, you and the rest of Nlogônia logistics specialists now have the task of planning the refueling of the gas stations in the city. For this, we collected information on stocks of R refineries and about the demands of P

gas stations. In addition, there are contractual restrictions that some refineries cannot supply some gas stations; When a refinery can provide a station, the shorter route to transport fuel from one place to another is known.

The experts' task is to minimize the time all stations are supplied, satisfying their demands. The refineries have a sufficiently large amount of trucks, so that you can assume that each truck will need to make only one trip from a refinery to a gas station. The capacity of each truck is greater than the demand of any gas station, but it may be necessary to use more than one refinery.

Input

The first line of the input contains three integers P,R,C

, respectively the number of gas stations, the number of refineries and the number of pairs of refineries and gas stations whose time will be given (1≤P,R≤1000; 1≤C≤20000). The second line contains P integers Di (1≤Di≤104), representing the demands in liters of gasoline of the gas stations i=1,2,…,P, in that order. The third line contains R integers Ei (1≤Ei≤104), representing stocks, in liters of gasoline, of refineries i=1,2,…,R, in that order. Finally, the latest C lines describe course times, in minutes, between stations and refineries. Each of these rows contains three integers, I,J,T (1≤I≤P; 1≤J≤R; 1≤T≤106), where I is the ID of a post, J is the ID of a refinery and T is the time in the course of a refinery truck J to I. No pair (J,I)

repeats. Not all pairs are informed; If a pair is not informed, contractual restrictions prevents the refinery from supplying the station.

Output

Print an integer that indicates the minimum time in minutes for all stations to be completely filled up. If this is not possible, print −1.

Examples

Input
3 2 5
20 10 10
30 20
1 1 2
2 1 1
2 2 3
3 1 4
3 2 5
Output
4
Input
3 2 5
20 10 10
25 30
1 1 3
2 1 1
2 2 4
3 1 2
3 2 5
Output
5
Input
4 3 9
10 10 10 20
10 15 30
1 1 1
1 2 1
2 1 3
2 2 2
3 1 10
3 2 10
4 1 1
4 2 2
4 3 30
Output
-1
Input
1 2 2
40
30 10
1 1 100
1 2 200
Output
200
有点像费用流,但是复杂度过不去;
由于我们要求最短时间,考虑二分答案;
对于此时的时间,显然只有<=x的边才能相连,
并且该边的流量设为inf;
然后设立源点,汇点跑一下最大流,看是否满流即可;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 300005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n, m;
int st, ed;
struct node {
int u, v, nxt, w;
}edge[maxn << 1]; int head[maxn], cnt; void addedge(int u, int v, int w) {
edge[cnt].u = u; edge[cnt].v = v; edge[cnt].nxt = head[u];
edge[cnt].w = w; head[u] = cnt++;
} int rk[maxn]; int bfs() {
queue<int>q;
ms(rk);
rk[st] = 1;
q.push(st);
while (!q.empty()) {
int tmp = q.front(); q.pop();
for (int i = head[tmp]; i != -1; i = edge[i].nxt) {
int to = edge[i].v;
if (rk[to] || edge[i].w <= 0)continue;
rk[to] = rk[tmp] + 1; q.push(to);
}
}
return rk[ed];
} int dfs(int u, int flow) {
if (u == ed)return flow;
int add = 0;
for (int i = head[u]; i != -1 && add < flow; i = edge[i].nxt) {
int v = edge[i].v;
if (rk[v] != rk[u] + 1 || !edge[i].w)continue;
int tmpadd = dfs(v, min(edge[i].w, flow - add));
if (!tmpadd) { rk[v] = -1; continue; }
edge[i].w -= tmpadd; edge[i ^ 1].w += tmpadd;
add += tmpadd;
}
return add;
} int ans;
void dinic() {
while (bfs())ans += dfs(st, inf);
} int P, R, C;
int D[maxn], E[maxn], T;
int sum;
struct nd {
int u, v, w;
}e[maxn]; bool chk(int x) {
ms(edge); memset(head, -1, sizeof(head)); cnt = 0;
ms(rk);
ans = 0;
st = 0; ed = P + R + 2;
for (int i = 1; i <= R; i++)addedge(st, i, E[i]), addedge(i, st, 0);
for (int i = 1; i <= P; i++)addedge(i + R, ed, D[i]), addedge(ed, i + R, 0);
for (int i = 1; i <= C; i++) {
if (x >= e[i].w) {
addedge(e[i].v, e[i].u + R, inf); addedge(e[i].u + R, e[i].v, 0);
}
}
dinic();
if (ans == sum)return true;
return false;
}
int main()
{
// ios::sync_with_stdio(0);
memset(head, -1, sizeof(head)); P = rd(); R = rd(); C = rd();
for (int i = 1; i <= P; i++) {
D[i] = rd(); sum += D[i];// gas stations
}
for (int i = 1; i <= R; i++)E[i] = rd();
for (int i = 1; i <= C; i++)e[i].u = rd(), e[i].v = rd(), e[i].w = rd();
bool fg = 0;
int l = 0, r = 1e7 + 1;
int as = 0;
while (l <= r) {
int mid = (l + r) / 2;
if (chk(mid)) {
r = mid - 1; as = mid; fg = 1;
}
else l = mid + 1;
}
if (!fg)cout << -1 << endl;
else cout << as << endl;
return 0;
}
 

Gym - 101908G 二分答案+最大流的更多相关文章

  1. BZOJ 1570: [JSOI2008]Blue Mary的旅行( 二分答案 + 最大流 )

    二分答案, 然后对于答案m, 把地点分成m层, 对于边(u, v), 第x层的u -> 第x+1层的v 连边. 然后第x层的u -> 第x+1层的u连边(+oo), S->第一层的1 ...

  2. BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛( floyd + 二分答案 + 最大流 )

    一道水题WA了这么多次真是.... 统考终于完 ( 挂 ) 了...可以好好写题了... 先floyd跑出各个点的最短路 , 然后二分答案 m , 再建图. 每个 farm 拆成一个 cow 点和一个 ...

  3. BZOJ 1305 CQOI2009 dance跳舞 二分答案+最大流

    题目大意:给定n个男生和n个女生,一些互相喜欢而一些不.举行几次舞会,每次舞会要配成n对.不能有同样的组合出现.每一个人仅仅能与不喜欢的人跳k次舞,求最多举行几次舞会 将一个人拆成两个点.点1向点2连 ...

  4. HDU3081(KB11-N 二分答案+最大流)

    Marriage Match II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. BZOJ2547 CTSC2002玩具兵(最短路径+二分答案+最大流)

    先不考虑只有一个显得有些特殊的天兵. 可以发现超能力的作用实质上是使兵更换职业.每一个兵到达某个位置最少需要更换职业的次数是彼此独立的,因为如果需要某两人互换职业可以使他们各自以当前职业到达需要到的地 ...

  6. 紫书 习题 11-10 UVa 12264 (二分答案+最大流)

    书上写的是UVa 12011, 实际上是 12264 参考了https://blog.csdn.net/xl2015190026/article/details/51902823 这道题就是求出一种最 ...

  7. luoguP1401 城市(二分答案+最大流)

    题意 N(2<=n<=200)个城市,M(1<=m<=40000)条无向边,你要找T(1<=T<=200)条从城市1到城市N的路,使得最长的边的长度最小,边不能重复 ...

  8. Marriage Match II 【HDU - 3081】【并查集+二分答案+最大流】

    题目链接 一开始是想不断的把边插进去,然后再去考虑我们每次都加进去边权为1的边,直到跑到第几次就没法继续跑下去的这样的思路,果不其然的T了. 然后,就是想办法咯,就想到了二分答案. 首先,我们一开始处 ...

  9. G - 土耳其冰淇凌 Gym - 101194D(二分答案 + 贪心检验)

    熊猫先生非常喜欢冰淇淋,尤其是冰淇淋塔.一个冰淇淋塔由K个冰淇淋球堆叠成一个塔.为了使塔稳定,下面的冰淇淋球至少要有它上面的两倍大.换句话说,如果冰淇淋球从上到下的尺寸是A0, A1, A2,···, ...

随机推荐

  1. js中 visibility和display的区别 js中 visibility和display的区别

    大多数人很容易将CSS属性display和visibility混淆,它们看似没有什么不同,其实它们的差别却是很大的. visibility属性用来确定元素是显示还是隐藏,这用visibility=&q ...

  2. Oracle 环境下 GoldenGate 集成抽取(Integrated Capture)模式与传统抽取模式(Classic Capture)间的切换

    检查抽取进程模式 在 GGSCI 环境下,执行类似如下语句查看特定进程的状态. GGSCI> info <Group_Name> 其中,<Group_Name> 为进程名 ...

  3. 回车换行0x0D和0x0A 小谈

    在计算机还没有出现之前,有一种叫做电传打字机(Teletype Model 33)的玩意,每秒钟可以打10个字符.但是它有一个问题,就是打完一行换行的时候,要用去0.2秒,正好可以打两个字符.要是在这 ...

  4. C#实现访问网络共享文件夹

    C#实现访问网络共享文件夹,使用 WNetAddConnection2A 和 WNetCancelConnection2A. 在目标服务器建立共享文件夹,建立访问账号test; public enum ...

  5. 多个if和一个ifelse的区别

    一个程序的要求如下,输入一个学生的数学成绩,如果大于等于60,那么就输出good,如果小于60那么输出not good int a scanf_s("%d",&a) if( ...

  6. c语言实践 用1角 2角 5角 凑成10元钱的方法

    /* 用1角,2角,5角凑出10元钱,有几种办法. 也就是0.1a+0.2b+0.3c=10,化简一下就是 a=100-2b-3c 因为a的范围是0到100,所以弄一个循环 把a的值从0尝试到100, ...

  7. 简单Factory模式

    #pragma once #include "student.h" #include "Teacher.h" typedef enum _EPersonType ...

  8. 跨域问题hbuilder

    1.借助jquery-jsonp插件 $.jsonp({ url: url, data: { 'name': usd, 'passwd': pass }, callbackParameter: &qu ...

  9. js实现选项卡切换

    <!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8" ...

  10. python23种设计模式

      第一篇 Python与设计模式:前言 第二篇(23种设计模式) 创建类设计模式(5种) 单例模式.工厂模式.简单工厂模式.抽象工厂模式.建造者模式.原型模式 结构类设计模式(7种) 代理模式.装饰 ...