题目描述

申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。

输入输出格式

输入格式:

第一行包含两个整数N, M,表示完成项目的天数和可以招募的志愿者的种类。 接下来的一行中包含N 个非负整数,表示每天至少需要的志愿者人数。 接下来的M 行中每行包含三个整数Si, Ti, Ci,含义如上文所述。为了方便起见,我们可以认为每类志愿者的数量都是无限多的。

输出格式:

仅包含一个整数,表示你所设计的最优方案的总费用。

输入输出样例

输入样例#1: 复制

3 3
2 3 4
1 2 2
2 3 5
3 3 2
输出样例#1: 复制

14

说明

1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均 不超过2^31-1。

题解

  感觉和“最长k可重区间集问题”有点像,然而我还是不会

  不得不说这题的思想真是非常巧妙

  我们把每一个时间当做一个点

  然后每一个时间$t$向$t+1$连容$inf-a[i]$费$0$的边

  费$0$好理解,那容为什么要设成这样?

  我们可以这样考虑,如果一天需要$a[i]$的志愿者,那么这个点必须被分去$a[i]$的流

  然后因为源点到出发的流是$inf$的,为了跑满最大流,因为这一段容只有这么多,所以必须有其他地方能让它流这么多流

  举个例子,我现在有$inf-b$的流,然而这一个点的容是$inf-a$的($b<a$,也就代表着人不够了),那么$inf-b>inf-a$,说明这一段流流不过去了,那么它必须在其他地方被分流,才能使它剩下的流过去

  那么我们对于每一个志愿者,我们从$x$到$y+1$连一条容$inf$费$c$的边,表示这一个志愿者可以在这些天工作,费用为$c$

  放到图里,就意味着可以从这里分去一部分流,使剩下的流可以通过,但要费用$c$

  那么因为源点出发流为$inf$为了跑满最大流(这样才能保证每一天人都够),同时费用最省,跑一个最小费用最大流即可

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=,M=;
int ver[M],Next[M],head[N],edge[M],flow[M],tot=;
int dis[N],disf[N],vis[N],Pre[N],last[N];
int n,m,s,t;
queue<int> q;
inline void add(int u,int v,int f,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,flow[tot]=f,edge[tot]=e;
ver[++tot]=u,Next[tot]=head[v],head[v]=tot,flow[tot]=,edge[tot]=-e;
}
bool spfa(){
memset(dis,0x3f,sizeof(dis));
q.push(s),dis[s]=,disf[s]=inf,Pre[t]=-;
while(!q.empty()){
int u=q.front();q.pop();vis[u]=;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(flow[i]&&dis[v]>dis[u]+edge[i]){
dis[v]=dis[u]+edge[i],Pre[v]=u,last[v]=i;
disf[v]=min(disf[u],flow[i]);
if(!vis[v]) vis[v]=,q.push(v);
}
}
}
return ~Pre[t];
}
int dinic(){
int mincost=;
while(spfa()){
int u=t;mincost+=disf[t]*dis[t];
while(u!=s){
flow[last[u]]-=disf[t];
flow[last[u]^]+=disf[t];
u=Pre[u];
}
}
return mincost;
}
int main(){
n=read(),m=read();
s=,t=n+;
for(int i=;i<=n;++i){
int x=read();
add(i,i+,inf-x,);
}
add(s,,inf,);
for(int i=;i<=m;++i){
int u=read(),v=read(),dis=read();
add(u,v+,inf,dis);
}
printf("%d\n",dinic());
return ;
}

BZOJ 1061 [Noi2008]志愿者招募(费用流)的更多相关文章

  1. BZOJ 1061: [Noi2008]志愿者招募 费用流

    1061: [Noi2008]志愿者招募 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1061 Description 申奥成功后,布布 ...

  2. BZOJ 1061: [Noi2008]志愿者招募

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 4064  Solved: 2476[Submit][Stat ...

  3. BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记】

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 3975  Solved: 2421[Submit][Stat ...

  4. BZOJ 1061: [Noi2008]志愿者招募【单纯形裸题】

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 4813  Solved: 2877[Submit][Stat ...

  5. BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记看另一篇吧】

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 3975  Solved: 2421[Submit][Stat ...

  6. BZOJ.1061.[NOI2008]志愿者招募(线性规划 对偶原理 单纯形 / 费用流SPFA)

    题目链接 线性规划 用\(A_{ij}=0/1\)表示第\(i\)天\(j\)类志愿者能否被招募,\(x_i\)为\(i\)类志愿者招募了多少人,\(need_i\)表示第\(i\)天需要多少人,\( ...

  7. [BZOJ1061] [Noi2008] 志愿者招募 (费用流)

    Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...

  8. BZOJ 1061: [Noi2008]志愿者招募(线性规划与网络流)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1061 题意: 思路: 直接放上大神的建模过程!!!(https://www.byvoid.com/z ...

  9. 【刷题】BZOJ 1061 [Noi2008]志愿者招募

    Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能完 ...

随机推荐

  1. maven 安装 过程

    maven 安装 过程 1 下载: apache-maven-3.0.3-bin.zip 压缩包 2 将压缩包解压到需要安装的目录文件中. 比如解压到: Z:\zr_anzhungwenjian\ap ...

  2. 2014.8.27 CAD数据结构

    Rwy表中存放所有物理跑道,主键rwy_id,但没有跑道中心点坐标 rwy_direction表中存放所有所有逻辑跑道号,也没有跑道入口坐标.同一rwy_id对应有2条记录 rwy_cline_poi ...

  3. 1 响应式页面-@media介绍,

    我们为什么要写自适应的页面(响应式页面) 众所周知,电脑.平板.手机的屏幕是差距很大的,假如在电脑上写好了一个页面,在电脑上看起来不错,但是如果放到手机上的话,那可能就会乱的一塌糊涂,这时候怎么解决呢 ...

  4. s3c6410存储器映射

    1.引导镜像区 0x0000_0000~0x07FF_FFFF 2.内部存储区 (1) 内部ROM 0x0800_0000~0x0BFF_FFFF (2) 内部SRAM 0x0C00_0000~0x0 ...

  5. MySQL与SQLServer的update left join语法区别

    需求: 表A 字段 A_ID, A_NAME, B_ID 表B 字段 B_ID, B_NAME 需求把A的所有A_NAME更新为相应的B的 B_NAME. mysql做法: UPDATE A LEFT ...

  6. C#中插入换行符

    要让一个Windows Form的TextBox显示多行文本就得把它的Multiline属性设置为true. 这个大家都知道,可是当你要在代码中为Text属性设置多行文本的时候可能会遇到点麻烦:) 你 ...

  7. eclipse egit(分支管理 上)

    这一章比较重要,讲述了Git比svn强大的地方,直接转载廖雪峰老师的文字,更好的理解 什么是分支 和 为什么分支git比svn做的更好 分支在实际中有什么用呢?假设你准备开发一个新功能,但是需要两周才 ...

  8. 带你剖析WebGis的世界奥秘----Geojson数据加载(高级)(转)

    带你剖析WebGis的世界奥秘----Geojson数据加载(高级) 转:https://zxhtom.oschina.io/zxh/20160819.html  编程  java  2016/08/ ...

  9. Jquery异步

    一.Jquery向aspx页面请求数据$("#Button1").bind("click", function () { $.ajax({ type: &quo ...

  10. Setting up an OpenGL development environment in ubuntu

    1.opening terminal window and entering the apt-get command for the packages: sudo apt-get install me ...