本节内容

  1. Gevent协程
  2. Select\Poll\Epoll异步IO与事件驱动
  3. Python连接Mysql数据库操作
  4. RabbitMQ队列
  5. Redis\Memcached缓存
  6. Paramiko SSH
  7. Twsited网络框架

协程

协程,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程

协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此:

协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。

协程的好处:

  • 无需线程上下文切换的开销
  • 无需原子操作锁定及同步的开销
  • 方便切换控制流,简化编程模型
  • 高并发+高扩展性+低成本:一个CPU支持上万的协程都不是问题。所以很适合用于高并发处理。

协程的缺点:

  • 无法利用多核资源:协程的本质是个单线程,它不能同时将 单个CPU 的多个核用上,协程需要和进程配合才能运行在多CPU上.当然我们日常所编写的绝大部分应用都没有这个必要,除非是cpu密集型应用。
  • 进行阻塞(Blocking)操作(如IO时)会阻塞掉整个程序

使用yield实现协程操作例子:

#!/usr/bin/python
# -*- conding:utf-8 -*-
__Author__ = "YoungCheung"
import time,queue def consumer(name):
print("--->starting eating baozi...")
while True:
new_baozi = yield
print("[%s] 在吃包子 %s" % (name,new_baozi))
#time.sleep(1)
def producer():
r = person.__next__()
r = person2.__next__()
n = 0
while n < 5:
n +=1
person.send(n)
person2.send(n)
print("\033[32;1m[老板]\033[0m 在生产包子%s" %n )
if __name__ == '__main__':
person = consumer("客人1")
person2 = consumer("客人2")
p = producer()

Greenlet

#!/usr/bin/python
# -*- conding:utf-8 -*-
__Author__ = "YoungCheung"
from greenlet import greenlet
def test1():
print (12)
gr2.switch()
print(34)
gr2.switch()
def test2():
print(56)
gr1.switch()
print(78)
gr1 = greenlet(test1) #启动一个协程
gr2 = greenlet(test2)
gr1.switch() #

Gevent

Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

#!/usr/bin/python
# -*- conding:utf-8 -*-
__Author__ = "YoungCheung"
import gevent
def foo():
print('Running in foo--------------------------------------------1')
gevent.sleep(2)
print('Explicit context switch to foo again----------------------2')
def bar():
print('Explicit context to bar ----------------------------------3')
gevent.sleep(1)
print('Implicit(精确的)context(文本内容)switch back to bar---4')
def func():
print("in the func ----------------------------------------------5")
gevent.sleep(0)
print("in the func agin -----------------------------------------6")
gevent.joinall([
gevent.spawn(foo),
gevent.spawn(bar),
gevent.spawn(func),
])

执行结果:

Running in foo-------------------------------------------------1
Explicit context to bar ----------------------------------------3
in the func -----------------------------------------------------5
in the func agin -----------------------------------------------6
Implicit(精确的)context(文本内容)switch back to bar---4
Explicit context switch to foo again--------------------------2

同步与异步的性能区别 

#!/usr/bin/python
# -*- conding:utf-8 -*-
__Author__ = "YoungCheung"
import gevent def task(pid):
"""
Some non-deterministic task
"""
gevent.sleep(0.5)
print('Task %s done' % pid) def synchronous():
for i in range(1,10):
task(i) def asynchronous():
threads = [gevent.spawn(task, i) for i in range(10)]
gevent.joinall(threads) print('Synchronous:')
synchronous() print('Asynchronous:')
asynchronous()

同步和异步的区别

上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。 初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,后者阻塞当前流程,并执行所有给定的greenlet。执行流程只会在 所有greenlet执行完后才会继续向下走。  

遇到IO阻塞时会自动切换任务

#!/usr/bin/python
# -*- conding:utf-8 -*-
__Author__ = "YoungCheung"
from urllib import request
import gevent,time
from gevent import monkey
monkey.patch_all() #把当前程序的所有io操作单独做标记
def f(url):
print('GET: %s' % url)
resp = request.urlopen(url)
data = resp.read()
f = open("url1.html",'wb')
f.write(data)
f.close()
print('%d bytes received from %s.' % (len(data), url))
urls = ['https://www.python.org/',
'https://www.yahoo.com/',
'https://github.com/' ]
time_start = time.time()
for url in urls:
f(url)
print("同步cost:",time.time() - time_start)
async_start_time = time.time()
gevent.joinall([
gevent.spawn(f, 'https://www.python.org/'),
gevent.spawn(f, 'https://www.yahoo.com/'),
gevent.spawn(f, 'https://github.com/'),
])
print("异步cost:",time.time() - async_start_time)

通过gevent实现单线程下的多socket并发

server side 

#!/usr/bin/python
# -*- conding:utf-8 -*-
__Author__ = "YoungCheung"
import sys,socket,time,gevent
from gevent import socket,monkey
monkey.patch_all() def server(port):
s = socket.socket()
s.bind(('0.0.0.0', port))
s.listen(500)
while True:
cli, addr = s.accept()
gevent.spawn(handle_request, cli)
def handle_request(conn):
try:
while True:
data = conn.recv(1024)
print("recv:", data)
conn.send(data)
if not data:
conn.shutdown(socket.SHUT_WR)
except Exception as ex:
print(ex)
finally:
conn.close()
if __name__ == '__main__':
server(9000)

client side  

#!/usr/bin/python
# -*- conding:utf-8 -*-
__Author__ = "YoungCheung"
import socket
#
# HOST = 'localhost' # The remote host
# PORT = 8001 # The same port as used by the server s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# s.connect((HOST, PORT))
s.connect(('localhost', 9000))
while True:
msg = bytes(input(">>:"),encoding="utf8")
s.sendall(msg)
data = s.recv(1024)
#print(data)
print('Received', repr(data))
s.close()

论事件驱动与异步IO

通常,我们写服务器处理模型的程序时,有以下几种模型:
(1)每收到一个请求,创建一个新的进程,来处理该请求;
(2)每收到一个请求,创建一个新的线程,来处理该请求;
(3)每收到一个请求,放入一个事件列表,让主进程通过非阻塞I/O方式来处理请求
上面的几种方式,各有千秋,
第(1)中方法,由于创建新的进程的开销比较大,所以,会导致服务器性能比较差,但实现比较简单。
第(2)种方式,由于要涉及到线程的同步,有可能会面临死锁等问题。
第(3)种方式,在写应用程序代码时,逻辑比前面两种都复杂。
综合考虑各方面因素,一般普遍认为第(3)种方式是大多数网络服务器采用的方式
 

看图说话讲事件驱动模型

在UI编程中,常常要对鼠标点击进行相应,首先如何获得鼠标点击呢?
方式一:创建一个线程,该线程一直循环检测是否有鼠标点击,那么这个方式有以下几个缺点
1. CPU资源浪费,可能鼠标点击的频率非常小,但是扫描线程还是会一直循环检测,这会造成很多的CPU资源浪费;如果扫描鼠标点击的接口是阻塞的呢?
2. 如果是堵塞的,又会出现下面这样的问题,如果我们不但要扫描鼠标点击,还要扫描键盘是否按下,由于扫描鼠标时被堵塞了,那么可能永远不会去扫描键盘;
3. 如果一个循环需要扫描的设备非常多,这又会引来响应时间的问题;
所以,该方式是非常不好的。

方式二:就是事件驱动模型
目前大部分的UI编程都是事件驱动模型,如很多UI平台都会提供onClick()事件,这个事件就代表鼠标按下事件。事件驱动模型大体思路如下:
1. 有一个事件(消息)队列;
2. 鼠标按下时,往这个队列中增加一个点击事件(消息);
3. 有个循环,不断从队列取出事件,根据不同的事件,调用不同的函数,如onClick()、onKeyDown()等;
4. 事件(消息)一般都各自保存各自的处理函数指针,这样,每个消息都有独立的处理函数;

 

事件驱动编程是一种编程范式,这里程序的执行流由外部事件来决定。它的特点是包含一个事件循环,当外部事件发生时使用回调机制来触发相应的处理。另外两种常见的编程范式是(单线程)同步以及多线程编程。

让我们用例子来比较和对比一下单线程、多线程以及事件驱动编程模型。下图展示了随着时间的推移,这三种模式下程序所做的工作。这个程序有3个任务需要完成,每个任务都在等待I/O操作时阻塞自身。阻塞在I/O操作上所花费的时间已经用灰色框标示出来了。

在单线程同步模型中,任务按照顺序执行。如果某个任务因为I/O而阻塞,其他所有的任务都必须等待,直到它完成之后它们才能依次执行。这种明确的执行顺序和串行化处理的行为是很容易推断得出的。如果任务之间并没有互相依赖的关系,但仍然需要互相等待的话这就使得程序不必要的降低了运行速度。

在多线程版本中,这3个任务分别在独立的线程中执行。这些线程由操作系统来管理,在多处理器系统上可以并行处理,或者在单处理器系统上交错执行。这使得当某个线程阻塞在某个资源的同时其他线程得以继续执行。与完成类似功能的同步程序相比,这种方式更有效率,但程序员必须写代码来保护共享资源,防止其被多个线程同时访问。多线程程序更加难以推断,因为这类程序不得不通过线程同步机制如锁、可重入函数、线程局部存储或者其他机制来处理线程安全问题,如果实现不当就会导致出现微妙且令人痛不欲生的bug。

在事件驱动版本的程序中,3个任务交错执行,但仍然在一个单独的线程控制中。当处理I/O或者其他昂贵的操作时,注册一个回调到事件循环中,然后当I/O操作完成时继续执行。回调描述了该如何处理某个事件。事件循环轮询所有的事件,当事件到来时将它们分配给等待处理事件的回调函数。这种方式让程序尽可能的得以执行而不需要用到额外的线程。事件驱动型程序比多线程程序更容易推断出行为,因为程序员不需要关心线程安全问题。

当我们面对如下的环境时,事件驱动模型通常是一个好的选择:

  1. 程序中有许多任务,而且…
  2. 任务之间高度独立(因此它们不需要互相通信,或者等待彼此)而且…
  3. 在等待事件到来时,某些任务会阻塞。

当应用程序需要在任务间共享可变的数据时,这也是一个不错的选择,因为这里不需要采用同步处理。

网络应用程序通常都有上述这些特点,这使得它们能够很好的契合事件驱动编程模型。

Select\Poll\Epoll异步IO 

http://www.cnblogs.com/alex3714/p/4372426.html 

番外篇 http://www.cnblogs.com/alex3714/articles/5876749.html

select 多并发socket 例子

#!/usr/bin/python
# -*- conding:utf-8 -*-
__Author__ = "YoungCheung"
import select
import socket
import sys
import queue server = socket.socket()
server.setblocking(0) server_addr = ('localhost',10000) print('starting up on %s port %s' % server_addr)
server.bind(server_addr) server.listen(5) inputs = [server, ] #自己也要监测呀,因为server本身也是个fd
outputs = [] message_queues = {} while True:
print("waiting for next event...") readable, writeable, exeptional = select.select(inputs,outputs,inputs) #如果没有任何fd就绪,那程序就会一直阻塞在这里 for s in readable: #每个s就是一个socket if s is server: #别忘记,上面我们server自己也当做一个fd放在了inputs列表里,传给了select,如果这个s是server,代表server这个fd就绪了,
#就是有活动了, 什么情况下它才有活动? 当然 是有新连接进来的时候 呀
#新连接进来了,接受这个连接
conn, client_addr = s.accept()
print("new connection from",client_addr)
conn.setblocking(0)
inputs.append(conn) #为了不阻塞整个程序,我们不会立刻在这里开始接收客户端发来的数据, 把它放到inputs里, 下一次loop时,这个新连接
#就会被交给select去监听,如果这个连接的客户端发来了数据 ,那这个连接的fd在server端就会变成就续的,select就会把这个连接返回,返回到
#readable 列表里,然后你就可以loop readable列表,取出这个连接,开始接收数据了, 下面就是这么干 的 message_queues[conn] = queue.Queue() #接收到客户端的数据后,不立刻返回 ,暂存在队列里,以后发送 else: #s不是server的话,那就只能是一个 与客户端建立的连接的fd了
#客户端的数据过来了,在这接收
data = s.recv(1024)
if data:
print("收到来自[%s]的数据:" % s.getpeername()[0], data)
message_queues[s].put(data) #收到的数据先放到queue里,一会返回给客户端
if s not in outputs:
outputs.append(s) #为了不影响处理与其它客户端的连接 , 这里不立刻返回数据给客户端 else:#如果收不到data代表什么呢? 代表客户端断开了呀
print("客户端断开了",s) if s in outputs:
outputs.remove(s) #清理已断开的连接 inputs.remove(s) #清理已断开的连接 del message_queues[s] ##清理已断开的连接 for s in writeable:
try :
next_msg = message_queues[s].get_nowait() except queue.Empty:
print("client [%s]" %s.getpeername()[0], "queue is empty..")
outputs.remove(s) else:
print("sending msg to [%s]"%s.getpeername()[0], next_msg)
s.send(next_msg.upper()) for s in exeptional:
print("handling exception for ",s.getpeername())
inputs.remove(s)
if s in outputs:
outputs.remove(s)
s.close() del message_queues[s]

select socket server

#!/usr/bin/python
# -*- conding:utf-8 -*-
__Author__ = "YoungCheung"
import socket
import sys messages = [ b'This is the message. ',
b'It will be sent ',
b'in parts.',
]
server_address = ('localhost', 10000) # Create a TCP/IP socket
socks = [ socket.socket(socket.AF_INET, socket.SOCK_STREAM),
socket.socket(socket.AF_INET, socket.SOCK_STREAM),
] # Connect the socket to the port where the server is listening
print('connecting to %s port %s' % server_address)
for s in socks:
s.connect(server_address) for message in messages: # Send messages on both sockets
for s in socks:
print('%s: sending "%s"' % (s.getsockname(), message) )
s.send(message) # Read responses on both sockets
for s in socks:
data = s.recv(1024)
print( '%s: received "%s"' % (s.getsockname(), data) )
if not data:
print(sys.stderr, 'closing socket', s.getsockname() )

select socket client

selectors模块

This module allows high-level and efficient I/O multiplexing, built upon the select module primitives. Users are encouraged to use this module instead, unless they want precise control over the OS-level primitives used.

#!/usr/bin/python
# -*- conding:utf-8 -*-
__Author__ = "YoungCheung"
import selectors
import socket sel = selectors.DefaultSelector() def accept(sock, mask):
conn, addr = sock.accept() # Should be ready
print('accepted', conn, 'from', addr,mask)
conn.setblocking(False)
sel.register(conn, selectors.EVENT_READ, read) def read(conn, mask):
data = conn.recv(1024) # Should be ready
if data:
print('echoing', repr(data), 'to', conn)
conn.send(data) # Hope it won't block
else:
print('closing', conn)
sel.unregister(conn)
conn.close() sock = socket.socket()
sock.bind(('localhost', 9000))
sock.listen(100)
sock.setblocking(False)
sel.register(sock, selectors.EVENT_READ, accept) while True:
events = sel.select()
for key, mask in events:
callback = key.data
callback(key.fileobj, mask)

数据库操作与Paramiko模块

http://www.cnblogs.com/wupeiqi/articles/5095821.html

Python之路第一课Day10--随堂笔记(异步IO\数据库\队列\缓存)的更多相关文章

  1. Python之路第一课Day11--随堂笔记(异步IO\数据库\队列\缓存之二)

    一.RabbitMQ队列 1.安装: a.官网: 安装 http://www.rabbitmq.com/install-standalone-mac.html b.安装python rabbitMQ ...

  2. Python之路,Day10 - 异步IO\数据库\队列\缓存

    Python之路,Day9 - 异步IO\数据库\队列\缓存   本节内容 Gevent协程 Select\Poll\Epoll异步IO与事件驱动 Python连接Mysql数据库操作 RabbitM ...

  3. Python之路,Day9 - 异步IO\数据库\队列\缓存

    https://www.cnblogs.com/alex3714/articles/5248247.html http://www.cnblogs.com/wupeiqi/articles/51327 ...

  4. Python - 异步IO\数据库\队列\缓存

    协程 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是线程:协程是一种用户态的轻量级线程,协程一定是在单线程运行的. 协程拥有自己的寄存器上下文和栈.协程调度切换时,将寄存器上下文和 ...

  5. Python 第七篇:异步IO\数据库\队列\缓存

    Gevent协程 Select\Poll\Epoll异步IO与事件驱动 Python连接Mysql数据库操作 RabbitMQ队列 Redis\Memcached缓存 Paramiko SSH Tws ...

  6. Python之路第一课Day2--随堂笔记

    入门知识拾遗 一.bytes类型 bytes转二进制然后转回来 msg="张杨" print(msg) print(msg.encode("utf-8")) p ...

  7. Python之路第一课Day6--随堂笔记(面向对象 )

    本节内容: 1. 面向对象编程介绍 2. 为什么要用面向对象进行开发? 3. 面向对象的特性:封装.继承.多态 4. 类.方法   一.面向过程 VS 面向对象  1. 编程范式 编程是 程序 员 用 ...

  8. Python之路第一课Day4--随堂笔记(迭代生成装饰器)

    上节回顾: 1.集合 a.关系测试 b.去重 2.文件操作及编码 3.函数 4.局部变量和全局变量 上节回顾 本节课内容: 1.迭代器生成器 2.装饰器 3.json pickle数据序列化 4.软件 ...

  9. Python之路第一课Day8--随堂笔记(socket 承接上节---网络编程)

    本节内容 Socket介绍 Socket参数介绍 基本Socket实例 Socket实现多连接处理 通过Socket实现简单SSH 通过Socket实现文件传送 作业:开发一个支持多用户在线的FTP程 ...

随机推荐

  1. 值得推荐的C/C++框架和库

    值得推荐的C/C++框架和库 [本文系外部转贴,原文地址:http://coolshell.info/c/c++/2014/12/13/c-open-project.htm]留作存档 下次造轮子前先看 ...

  2. October 31st Week 45th Monday 2016

    While there is life there is hope. 一息若存,希望不灭. Go on living even if there is no hope. Knowing is not ...

  3. 深入理解Objective-C:Category

    摘要 无论一个类设计的多么完美,在未来的需求演进中,都有可能会碰到一些无法预测的情况.那怎么扩展已有的类呢?一般而言,继承和组合是不错的选择.但是在Objective-C 2.0中,又提供了categ ...

  4. log4j 文档

    log4j中文文档  中文详细教程 log4j中文文档   这篇文章描述了Log4j的API.独一无二的特色和设计原理.Log4j是一个聚集了许多作者劳动成果的开源软件项目.它允许开发人眼以任意的粒度 ...

  5. 浅谈redis和memcached的区别

    缓存技术方面说到redis大家必然会联想到memcached,了解它们的人应该都知道以下几点吧 redis与 memcached相比,redis支持key-value数据类型,同事支持list.set ...

  6. yii 验证问题

    yii 版本2.08 yii 验证码问题 1.模型里加入'verifyCode', 'captcha','message'=>'error','captchaAction' => 'tes ...

  7. pyqt的信号槽机制(转)

    PySide/PyQt Tutorial: Creating Your Own Signals and Slots This article is part 5 of 8 in the series  ...

  8. 增删改查--windows下mysql客户端--表的使用

    >>>>>>>>>>>>>>>>>>>> selet 5种子句之where常用运 ...

  9. python学习 3笔记

    merge dict def merge(defaults, override): r = {} for k, v in defaults.items(): if k in override: if ...

  10. BZOJ2342 Manacher + set

    题一:别人介绍的一道题,题意是给出一个序列,我们要求出一段最常的连续子序列,满足:该子序列能够被平分为三段,第一段和第二段形成回文串,第二段和第三段形成回文串. 题二:BZOJ2342和这题非常的相似 ...