matlab 中“newff”
函数的使用方法技巧|和各参数的意义



先来一个简单的源程序让大家练习一下:

% Here input P and targets T define a simple function
which 

% we can plot: 



p = [0 1 2 3 4 5 6 7 8]; 

t = [0 0.84 0.91 0.14 -0.77 -0.96 -0.28 0.66
0.99]; 

plot(p,t,'o') 



net = newff([0 8],[10 1],{'tansig'
'purelin'},'trainlm'); 

y1 = sim(net,p) 

plot(p,t,'o',p,y1,'x') 



Here the network is trained for up to 50 epochs to a error goal
of 

0.01, and then resimulated. 



net.trainParam.epochs = 50; 

net.trainParam.goal = 0.01; 

net = train(net,p,t); 

y2 = sim(net,p) 

plot(p,t,'o',p,y1,'x',p,y2,'*') 



设[P,T]是训练样本,[X,Y]是测试样本;

net=newrb(P,T,err_goal,spread); %建立网络

q=sim(net,p);

e=q-T;

plot(p,q); %画训练误差曲线

q=sim(net,X);

e=q-Y;

plot(X,q); %画测试误差曲线



训练前馈网络的第一步是建立网络对象。函数newff建立一个可训练的前馈网络。这需要4个输入参数。

第一个参数是一个Rx2的矩阵以定义R个输入向量的最小值和最大值。

第二个参数是一个设定每层神经元个数的数组。

第三个参数是包含每层用到的传递函数名称的细胞数组。

最后一个参数是用到的训练函数的名称。

举个例子,下面命令将创建一个二层网络。它的输入是两个元素的向量,第一层有三个神经元(3),第二层有一个神经元(1)。

第一层的传递函数是tan-sigmoid,输出层的传递函数是linear。

输入向量的第一个元素的范围是-1到2[-1 2],输入向量的第二个元素的范围是0到5[0
5],训练函数是traingd。



  net=newff([-1 2; 0
5],[3,1],{'tansig','purelin'},'traingd');



    
  这个命令建立了网络对象并且初始化了网络权重和偏置,因此网络就可以进行训练了。

我们可能要多次重新初始化权重或者进行自定义的初始化。

下面就是初始化的详细步骤。

  在训练前馈网络之前,权重和偏置必须被初始化。初始化权重和偏置的工作用命令init来实现。这个函数接收网络对象并初始化权重和偏置后返回网络对象。

下面就是网络如何初始化的:



  net = init(net);



  我们可以通过设定网络参数net.initFcn和net.layer{i}.initFcn这一技巧来初始化一个给定的网络。

net.initFcn用来决定整个网络的初始化函数。前馈网络的缺省值为initlay,它允许每一层用单独的初始化函数。

设定了net.initFcn ,那么参数net.layer{i}.initFcn
也要设定用来决定每一层的初始化函数。

  对前馈网络来说,有两种不同的初始化方式经常被用到:initwb和initnw。initwb函数根据每一层自己的初始化参数(net.inputWeights{i,j}.initFcn)初始化权重矩阵和偏置。前馈网络的初始化权重通常设为rands,它使权重在-1到1之间随机取值。这种方式经常用在转换函数是线性函数时。initnw通常用于转换函数是曲线函数。它根据Nguyen和Widrow[NgWi90]为层产生初始权重和偏置值,使得每层神经元的活动区域能大致平坦的分布在输入空间。

它比起单纯的给权重和偏置随机赋值有以下优点:

(1)减少神经元的浪费(因为所有神经元的活动区域都在输入空间内)。

(2)有更快的训练速度(因为输入空间的每个区域都在活动的神经元范围中)。

  初始化函数被newff所调用。因此当网络创建时,它根据缺省的参数自动初始化。init不需要单独的调用。可是我们可能要重新初始化权重和偏置或者进行自定义的初始化。例如,我们用newff创建的网络,它缺省用initnw来初始化第一层。如果我们想要用rands重新初始化第一层的权重和偏置,我们用以下命令:

  net.layers{1}.initFcn = 'initwb';

  net.inputWeights{1,1}.initFcn = 'rands';

  net.biases{1,1}.initFcn = 'rands';

  net.biases{2,1}.initFcn = 'rands';

  net = init(net);



IW: 输入层到隐含层的权重矩阵

LW: 隐含层和输出层间的权重矩阵

b: 阀值向量



如网络为net, 输入层和输出均为一个接点情况下,则用

net.IW{1,1}可以看到第一个输入接点到第一隐含层的权重向量;

net.LW{2,1}可以看到隐含层到输出层的权值向量;

net.b{1,1}是隐含层的阀值向量,

net.b{2,1}是输出接点的阀值;



在多输入输出下先用

net.IW

net.LW

net.b

查看各矩阵结构,再相应用net.IW{?,?}等语句查到相关的向量

matlab 中“newff” 函数的参数设置的更多相关文章

  1. Matlab中 awgn 函数输入参数带有‘measured’ 时snr的含义

    MATLAB中awgn 函数可以为输入信号x 添加一定大小的噪声. out = awgn(in,snr,'measured');  是一种常见的使用方法,意思是在添加噪声前先测量一下输入信号的功率,再 ...

  2. matlab中nargin函数输入参数数目

    来源:https://ww2.mathworks.cn/help/matlab/ref/nargin.html?searchHighlight=nargin&s_tid=doc_srchtit ...

  3. matlab中subplot函数的功能

    转载自http://wenku.baidu.com/link?url=UkbSbQd3cxpT7sFrDw7_BO8zJDCUvPKrmsrbITk-7n7fP8g0Vhvq3QTC0DrwwrXfa ...

  4. 【原创】Matlab中plot函数全功能解析

    [原创]Matlab中plot函数全功能解析 该帖由Matlab技术论(http://www.matlabsky.com)坛原创,更多精彩内容参见http://www.matlabsky.com 功能 ...

  5. Matlab中plot函数全功能解析

    Matlab中plot函数全功能解析 功能 二维曲线绘图 语法 plot(Y)plot(X1,Y1,...)plot(X1,Y1,LineSpec,...)plot(...,'PropertyName ...

  6. Matlab中imfilter()函数的用法

    Matlab中imfilter()函数的用法 功能:对任意类型数组或多维图像进行滤波.用法:B = imfilter(A,H) B = imfilter(A,H,option1,option2,... ...

  7. matlab中patch函数的用法

    http://blog.sina.com.cn/s/blog_707b64550100z1nz.html matlab中patch函数的用法——emily (2011-11-18 17:20:33) ...

  8. 【matlab】设定函数默认参数

    C++/java/python系列的语言,函数可以有默认值,通常类似如下的形式: funtion_name (param1, param2=default_value, ...) 到了matlab下发 ...

  9. Direcshow中视频捕捉和参数设置报告

    Direcshow中视频捕捉和参数设置报告 1.      关于视频捕捉(About Video Capture in Dshow) 1视频捕捉Graph的构建 一个能够捕捉音频或者视频的graph图 ...

随机推荐

  1. elementui bug ..

    .el-menu { overflow: hidden !important;} element 菜单导航栏 会 超出 父组件一点..在组件中加上上边那句来隐藏!!!

  2. sharepoint_study_5

    描述:手动进行SharePoint网页调试图解 解决: 第一步:打开页面的后台代码,设置断点 第二步:添加到进程 第三步:选择SharePoint进程,我这里都选了,如果你知道要调试的页面是哪一个进程 ...

  3. Tesorflow-自动编码器(AutoEncoder)

    直接附上代码: import numpy as np import sklearn.preprocessing as prep import tensorflow as tf from tensorf ...

  4. linux系统优化基础

    linux系统优化基础 tags: linux 优化 kingle---### 1, 查看centos版本:cat etc/redhat-release 看看centos架构信息:uname -m 查 ...

  5. D. Match & Catch 后缀自动机 || 广义后缀自动机

    http://codeforces.com/contest/427/problem/D 题目是找出两个串的最短公共子串,并且在两个串中出现的次数只能是1次. 正解好像是dp啥的,但是用sam可以方便很 ...

  6. Java基础22-Static关键字

    1.static关键字 public class Test{ public static void main(String[] args){ Persion p1=new Persion(); Per ...

  7. ffmpeg+cuda+opencv

    为了让ffmpeg使用gpu进行解码,可以按以下步骤: 1 下载nvidia官网提供的ffmpeg,编译安装 https://developer.nvidia.com/ffmpeg 注意原来的选项上还 ...

  8. Android: 通过Runtime.getRuntime().exec调用底层Linux下的程序或脚本

    Android Runtime使得直接调用底层Linux下的可执行程序或脚本成为可能 比如Linux下写个测试工具,直接编译后apk中通过Runtime来调用 或者写个脚本,apk中直接调用,省去中间 ...

  9. yield用法

    yield的__next__()和send()的用法,详见代码 def D(): n = 1 while n < 5: m = yield n print("m:",m) p ...

  10. C++ Memory System Part2: 自定义new和delete

    在第一部分中,我们介绍了new / delete的具体用法和背后的实现细节,这次我们将构建我们自己的小型工具集,可以使用我们自定义的allocator类来创建任意类型的实例(或者实例数组),我们需要做 ...