1.李航《统计学习方法》;

2.https://blog.csdn.net/laobai1015/article/details/78113214

3.http://www.cnblogs.com/bentuwuying/p/6616680.html

4.http://kyonhuang.top/Andrew-Ng-Deep-Learning-notes/#/Neural_Networks_and_Deep_Learning/神经网络基础

O、逻辑斯蒂回归的缘起

起源于线性回归。线性回归是一种回归分析技术,回归分析本质上就是一个函数值预测的问题,就是找出因变量和自变量之间的关系。回归分析的因变量应是连续变量,若因变量是离散变量,则问题转化为分类问题。

对于给定的数据集,我们需要学习的模型为:

也就是说,我们要从已知的数据集T中学习到模型参数w,b。怎么学呢?

对于给定的样本(xi,yi),我们模型的预测值为,两者之间的误差叫做损失,通常我们采取误差的平方作为损失函数,则在训练数据集T上,模型的损失函数为:

我们的目标是损失函数最小化,即:

上述这最后一步怎么求?我们可以用梯度下降法来求解上述最小化问题的数值解。关于梯度下降法,请参考:梯度下降原理及Python实现,和梯度下降(Gradient Descent)小结

以上是线性回归(Linear Regression),其“线性”二字的内涵在于它认为模型输出(y)是模型输入(x)的线性表达式。而且,线性模型也可以用于分类!

考虑二分类问题,我们有训练数据集,我们需要一个模型,能够告诉我们P(y|x)。比如,这个模型告诉我们P(y=1|x1)=0.6,P(y=0|x1)=0.4,然后因为0.6>0.4,所以模型认为特征x1对应的预测值y为1.如何找到这个模型呢?

借用线性模型的思想,我们引入w,b,由于w·x+b取值是连续的,所以它不能拟合离散变量y(取值为0或1),但可以用它拟合同为连续变量的条件概率P(y=1|x)。

我们注意到,w·x+b取值范围是-∞~+∞,不符合概率取值范围0~1,因此得将w·x+b进行转换,使其映射到0~1的范围。函数可以实现转换,最理想的是单位阶跃函数:

但是阶跃函数不满足单调可导,也就不能用梯度下降法求解损失函数最小化的参数w,b。我们可以找一个可导、与阶跃函数形状相似的函数,对数概率函数(logistic function)就是这样一个替代函数:,该函数也称sigmoid函数,该函数具有如下的特性:当x趋近于负无穷时,y趋近于0;当x趋近于正无穷时,y趋近于1;当x=1/2时,y=0. 可参考:http://www.cnblogs.com/maybe2030/p/5678387.html

一、逻辑斯蒂回归的概览

1.逻辑斯蒂回归是一种分类算法,最常用的二项逻辑斯蒂回归只适用于二分类问题;

2.逻辑斯蒂回归算法的思想就是:假定一件事情发生(Y=1)的对数几率是特征(x)的线性函数。或者说,在逻辑斯蒂回归模型中,输出Y=1的对数几率是由输入x的线性函数表示的。

3.二项逻辑斯蒂回归模型定义

二项逻辑斯蒂回归模型是如下的条件概率分布:

说明:上述两个式子代表了所有逻辑斯蒂回归模型的通用表达式,具体模型之间的差别在于模型参数w和b。对于给定的输入实例x,按照上述两式可以求得P(Y=1|x)和P(Y=0|x)。逻辑斯蒂回归比较两个条件概率值的大小,将实例x分到概率值较大的那一类。

4.Logistic 回归可以看作是一个非常小的神经网络。下图是一个典型例子:(参考文献4)

二、逻辑斯蒂回归的流程

我们要使用逻辑斯蒂回归模型搭建一个分类器,首先得写出这个逻辑斯蒂回归模型,其次得写出模型好坏的评价函数(即代价函数cost function),最后是估计模型的参数w(b被融入到w中,即取w0=b,且将偏置项的变量x0设置为1)——即最小化损失函数来求得参数w

1.对于给定的训练数据集,首先我们初始化一个模型w,认为

显然对于训练数据(xi,yi),最好的模型是能够给出P(y=1|xi)=1,P(y=0|xi)=0这样的预测,显然这是不容易的。同时,由于我们一共有m条训练数据,我们必须要找到这样的模型,使得模型对全部训练数据集的整体预测效果最佳

2.如何评价模型好坏?直观地理解就是比较各个训练样本的真实标签和模型预测标签之间的误差值的加总,而这个总误差不便于求导。因此我们另外从极大似然估计的角度去描述模型好坏,即使得所有训练数据最有可能发生的模型w,就是我们要找的模型。(摘自参考资料2)

因此得到:

................................(*)

3.最后就是最小化J(θ),逻辑斯蒂回归学习中通常采用的方法是梯度下降法牛顿法。参考文献3。

对上述(*)式的J(θ)求θ的导数,可得:

根据梯度下降法,得到如下的更新公式:

三、总结

以上的1步就是给出逻辑斯蒂回归这一模型认为的判别函数集(模型参数未定,所以是一个函数集),第2步就是给出损失函数,就是给出了判断函数好坏的标准,第3步就是最小化损失函数来求得模型参数,就是挑选最好的函数的过程。

Logistic Regression学习笔记的更多相关文章

  1. 学习Logistic Regression的笔记与理解(转)

    学习Logistic Regression的笔记与理解 1.首先从结果往前来看下how logistic regression make predictions. 设我们某个测试数据为X(x0,x1, ...

  2. Classification week2: logistic regression classifier 笔记

    华盛顿大学 machine learning: Classification 笔记. linear classifier 线性分类器 多项式: Logistic regression & 概率 ...

  3. 机器学习5—logistic回归学习笔记

    机器学习实战之logistic回归 test5.py #-*- coding:utf-8 import sys sys.path.append("logRegres.py") fr ...

  4. Stepwise regression 学习笔记

    之前在 SPSS 中的回归分析算法中发现,在它里面实现的算法有 Enter 和 Stepwise 两种.Enter 很容易理解,就是将所有选定的自变量一起放入模型中,直接去计算包含所有自变量的整个模型 ...

  5. Sklearn--(SVR)Regression学习笔记

    今天介绍一个机器学习包,sklearn.其功能模块有regression\classification\clustering\Dimensionality reduction\data preproc ...

  6. 编程作业2.1:Logistic regression

    题目 在这部分的练习中,你将建立一个逻辑回归模型来预测一个学生是否能进入大学.假设你是一所大学的行政管理人员,你想根据两门考试的结果,来决定每个申请人是否被录取.你有以前申请人的历史数据,可以将其用作 ...

  7. [Machine Learning]学习笔记-Logistic Regression

    [Machine Learning]学习笔记-Logistic Regression 模型-二分类任务 Logistic regression,亦称logtic regression,翻译为" ...

  8. ufldl学习笔记与编程作业:Logistic Regression(逻辑回归)

    ufldl学习笔记与编程作业:Logistic Regression(逻辑回归) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听 ...

  9. 学习笔记(七): Logistic Regression

    目录 Calculating a Probability Model Training 1.Loss function for Logistic Regression 2.Regularization ...

随机推荐

  1. 通过 Powershell 来替换 ARM 模式下虚拟机的网络接口

    需求描述 客户在部署完 ARM 模式的虚拟机以后,由于误操作在虚拟机内部禁用了网卡导致远程访问虚拟机受到限制,以下是通过 Powershell 命令来替换原有虚拟网络接口实现虚拟网卡重置功能. Not ...

  2. 序列化Serializable

    public interface Serializable 类的序列化由实现java.io.Serializable接口的类启用. 不实现此接口的类将不会使任何状态序列化或反序列化. 可序列化类的所有 ...

  3. C# 64位win7下DllImport LoadLibrary函数失败 z

    [DllImport["kernel32.dll"]] static extern IntPtr LoadLibrary(string lpFileName); public vo ...

  4. 12C RAC 常用检查命令,持续总结中

    grid: olsnodes -s列出集群中节点crsctl check cluster -all检查几圈状态crsctl check clustercrsctl check crs 检查当前节点sr ...

  5. CSS z-index的用法

    理清 position及z-index的用法: static :  无特殊定位,对象遵循HTML定位规则absolute :  将对象从文档流中拖出,使用left,right,top,bottom等属 ...

  6. 【洛谷5283】[十二省联考2019] 异或粽子(可持久化Trie树+堆)

    点此看题面 大致题意: 求前\(k\)大的区间异或和之和. 可持久化\(Trie\)树 之前做过一些可持久化\(Trie\)树题,结果说到底还是主席树. 终于,碰到一道真·可持久化\(Trie\)树的 ...

  7. shell小计

    NF 是每行的字段数  (NF==8)标识每行有8个字段,当前记录中的字段个数,就是有多少列NR 是总共读取了多少行 (NR==2)第二行的意思,已经读出的记录数,就是行号,从 1 开始 awk简单使 ...

  8. Linux云主机 监控方案浅析

    1.为何需要监控 监控是运维工程师的眼睛,它可帮助运维工程师第一时间发现系统的问题. 对于服务器的整个生命周期,都要和监控打交道: 当有服务器上架,都需要加入比如CPU负载.内存.网络.磁盘等基础监控 ...

  9. R 代码积累

    R 代码积累不定期更新 1.阶乘.递归.reduce.sprintf #NO.1 # 阶乘函数 fact <- function(n){ if(n==0) return(1) #基例在这 els ...

  10. Linux 安装ruby编译环境

    1.输入:yum install ruby 1.1如果安装文件出错Error Downloading Packages: 输入:yum clean all 输入:yum makecache,此时如果出 ...