The Cow Prom
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 1451   Accepted: 922

Description

The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in their finest gowns, complete with corsages and new shoes. They know that tonight they will each try to perform the Round Dance.

Only cows can perform the Round Dance which requires a set of ropes and a circular stock tank. To begin, the cows line up around a circular stock tank and number themselves in clockwise order consecutively from 1..N. Each cow faces the tank so she can see the other dancers.

They then acquire a total of M (2 <= M <= 50,000) ropes all of which are distributed to the cows who hold them in their hooves. Each cow hopes to be given one or more ropes to hold in both her left and right hooves; some cows might be disappointed.

For the Round Dance to succeed for any given cow (say, Bessie), the ropes that she holds must be configured just right. To know if Bessie's dance is successful, one must examine the set of cows holding the other ends of her ropes (if she has any), along with the cows holding the other ends of any ropes they hold, etc. When Bessie dances clockwise around the tank, she must instantly pull all the other cows in her group around clockwise, too. Likewise, 
if she dances the other way, she must instantly pull the entire group counterclockwise (anti-clockwise in British English).

Of course, if the ropes are not properly distributed then a set of cows might not form a proper dance group and thus can not succeed at the Round Dance. One way this happens is when only one rope connects two cows. One cow could pull the other in one direction, but could not pull the other direction (since pushing ropes is well-known to be fruitless). Note that the cows must Dance in lock-step: a dangling cow (perhaps with just one rope) that is eventually pulled along disqualifies a group from properly performing the Round Dance since she is not immediately pulled into lockstep with the rest.

Given the ropes and their distribution to cows, how many groups of cows can properly perform the Round Dance? Note that a set of ropes and cows might wrap many times around the stock tank.

Input

Line 1: Two space-separated integers: N and M

Lines 2..M+1: Each line contains two space-separated integers A and B that describe a rope from cow A to cow B in the clockwise direction.

Output

Line 1: A single line with a single integer that is the number of groups successfully dancing the Round Dance.

Sample Input

5 4
2 4
3 5
1 2
4 1

Sample Output

1

Hint

Explanation of the sample:

ASCII art for Round Dancing is challenging. Nevertheless, here is a representation of the cows around the stock tank:

       _1___

/**** \

5 /****** 2

/ /**TANK**|

\ \********/

\ \******/ 3

\ 4____/ /

\_______/

Cows 1, 2, and 4 are properly connected and form a complete Round Dance group. Cows 3 and 5 don't have the second rope they'd need to be able to pull both ways, thus they can not properly perform the Round Dance.

Source

 
典型的阅读理解题,看了好久的题其实就是求有向图强连通分量结点数>=2的个数。虽然简单,但是第一次确敲错了好几个小地方,敲代码时一定要专心,下面列出错误
/*
ID: LinKArftc
PROG: 3180.cpp
LANG: C++
*/ #include <map>
#include <set>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <utility>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-8
#define randin srand((unsigned int)time(NULL))
#define input freopen("input.txt","r",stdin)
#define debug(s) cout << "s = " << s << endl;
#define outstars cout << "*************" << endl;
const double PI = acos(-1.0);
const double e = exp(1.0);
const int inf = 0x3f3f3f3f;
const int INF = 0x7fffffff;
typedef long long ll; const int maxn = ;
const int maxm = ; struct Edge {
int v, next;
} edge[maxm]; int head[maxn], tot; void init() {
tot = ;
memset(head, -, sizeof(head));
} void addedge(int u, int v) {
edge[tot].v = v;
edge[tot].next = head[u];
head[u] = tot ++;
} int n, m;
int dfn[maxn], low[maxn];
bool ins[maxn];
int scc, Time;
stack <int> st;
vector <int> vec[maxn]; void tarjan(int u) {
int v;
dfn[u] = low[u] = ++ Time;
st.push(u);
ins[u] = true;
for (int i = head[u]; i + ; i = edge[i].next) {
v = edge[i].v;
if (!dfn[v]) {
tarjan(v);
low[u] = min(low[v], low[u]);
} else if (ins[v]) low[u] = min(low[u], dfn[v]);
}
if (dfn[u] == low[u]) {//刚开始写成dfn[u] == low[v]了
scc ++;
do {
v = st.top();
st.pop();
ins[v] = false;
vec[scc].push_back(v);
} while (u != v);
}
} int main() { //input;
int u, v;
while (~scanf("%d %d", &n, &m)) {
init();
for (int i = ; i <= m; i ++) {//刚开始写成i<=n了
scanf("%d %d", &u, &v);
addedge(u, v);
}
memset(dfn, , sizeof(dfn));
memset(ins, , sizeof(ins));
while (!st.empty()) st.pop();
for (int i = ; i <= n; i ++) vec[i].clear();
scc = ;
Time = ;
for (int i = ; i <= n; i ++) {
if (!dfn[i]) tarjan(i);
}
int ans = ;
for (int i = ; i <= scc; i ++) {
if (vec[i].size() >= ) ans ++;
}
printf("%d\n", ans);
} return ;
}

POJ3180(有向图强连通分量结点数>=2的个数)的更多相关文章

  1. 有向图强连通分量的Tarjan算法和Kosaraju算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  2. 有向图强连通分量Tarjan算法

    在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间 ...

  3. 有向图强连通分量的Tarjan算法

    有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...

  4. 有向图强连通分量 Tarjan算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  5. 【转】有向图强连通分量的Tarjan算法

    原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...

  6. 图的连通性:有向图强连通分量-Tarjan算法

    参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...

  7. 算法笔记_144:有向图强连通分量的Tarjan算法(Java)

    目录 1 问题描述 2 解决方案 1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连 ...

  8. 有向图强连通分量的Tarjan算法及模板

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图.非强联通图有向 ...

  9. hdu1269(有向图强连通分量)

    hdu1269 题意 判断对于任意两点是否都可以互相到达(判断有向图强连通分量个数是否为 1 ). 分析 Tarjan 算法实现. code #include<bits/stdc++.h> ...

随机推荐

  1. C++学习001-注释

    天了噜,感觉自己最近好堕落啊,  在等待项目任务书到来的时候,在来好好学习学习C++ 今天来学习一下C++的注释风格 编写环境 Qt 5.7 1. //注释 // ui->setupUi(thi ...

  2. devstack环境搭建

    1. devstack部署 参考Quick Start,推荐使用ubuntu16.04进行安装 1.1 配置ubuntu国内源 修改/etc/apt/sources.list内容为 deb http: ...

  3. P2384洛谷 最短路

    题目描述 给定n个点的带权有向图,求从1到n的路径中边权之积最小的简单路径. 输入输出格式 输入格式: 第一行读入两个整数n,m,表示共n个点m条边. 接下来m行,每行三个正整数x,y,z,表示点x到 ...

  4. 对 a = [lambda : x for x in range(3)] 的理解

    上面的语句创建了一个列表 a ,其中有三个元素,每个元素都是一个 lambda 匿名函数. >>> a = [lambda : x for x in range(3)] >&g ...

  5. HDU 4436 str2int(后缀自动机)(2012 Asia Tianjin Regional Contest)

    Problem Description In this problem, you are given several strings that contain only digits from '0' ...

  6. [转]Hexo博客添加访问统计 - 记录

    引入不蒜子 <script async src="//dn-lbstatics.qbox.me/busuanzi/2.3/busuanzi.pure.mini.js"> ...

  7. mysql初识(5)

    将mysql数据库内的表导出为execel格式文件: 方法1:mysql命令:select * into outfile '/tmp/test.xls' from table_name;(需要注意的是 ...

  8. [android]不解锁刷机

    本人因为误操作进入andriod recovery模式,显示failed to boot 2,致手机无法恢复出厂值, 当时那叫一个郁闷.上论坛搜寻无数,唉让刷底包的无数(在此不解释),万恶的刷底包. ...

  9. Ext.Net中如何获取组件

    我们在编写函数function的时候,常常需要用到页面上的组件.这时候就需要调用组件. 在Ext.net中,调用组件可以用.App.ID.(ID指的是想要调用的组件的ID). 例如: 我写一个函数需要 ...

  10. oracle ocp 052考试学习

    1.数据字典存储在SYSTEM表空间中. 2.SYSAUX可以offline: SQL>alter tablespace sysaux offline; 3.SYSTEM和SYSAUX都是永久表 ...