The Perfect Stall
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 23356   Accepted: 10405

Description

Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and, of course, a cow may be only assigned to one stall. 
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible. 

Input

The input includes several cases. For each case, the first line contains two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. Each of the following N lines corresponds to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow.

Output

For each case, output a single line with a single integer, the maximum number of milk-producing stall assignments that can be made.

Sample Input

5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2

Sample Output

4

比较裸的二分图最大匹配。
#include <cstdio>
#include <vector>
#include <cstring>
using namespace std;
const int MAXN=;
vector<int> arc[MAXN];
int n,m;
int match[MAXN],vis[MAXN];
bool dfs(int u)
{
for(int i=;i<arc[u].size();i++)
{
int to=arc[u][i];
if(!vis[to])
{
vis[to]=;
int w=match[to];
if(w==-||(dfs(w)))
{
match[to]=u;
match[u]=to;
return true;
}
}
}
return false;
}
int max_flow()
{
int ans=;
memset(match,-,sizeof(match));
for(int i=;i<=n;i++)
{
if(match[i]==-)
{
memset(vis,,sizeof(vis));
if(dfs(i)) ans++;
}
}
return ans;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=;i<=n;i++) arc[i].clear();
for(int i=;i<=n;i++)
{
int s;
scanf("%d",&s);
for(int j=;j<s;j++)
{
int u;
scanf("%d",&u);
u+=n;
arc[i].push_back(u);
arc[u].push_back(i);
}
}
int res=max_flow();
printf("%d\n",res);
}
return ;
}

POJ1274(二分图最大匹配)的更多相关文章

  1. Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配)

    Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配) Description 农夫约翰上个 ...

  2. POJ 2226二分图最大匹配

    匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名.匈牙利算法是基于Hall定理中充分性证明的思想,它是二部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图 ...

  3. POJ2239 Selecting Courses(二分图最大匹配)

    题目链接 N节课,每节课在一个星期中的某一节,求最多能选几节课 好吧,想了半天没想出来,最后看了题解是二分图最大匹配,好弱 建图: 每节课 与 时间有一条边 #include <iostream ...

  4. poj 2239 二分图最大匹配,基础题

    1.poj 2239   Selecting Courses   二分图最大匹配问题 2.总结:看到一个题解,直接用三维数组做的,很巧妙,很暴力.. 题意:N种课,给出时间,每种课在星期几的第几节课上 ...

  5. UESTC 919 SOUND OF DESTINY --二分图最大匹配+匈牙利算法

    二分图最大匹配的匈牙利算法模板题. 由题目易知,需求二分图的最大匹配数,采取匈牙利算法,并采用邻接表来存储边,用邻接矩阵会超时,因为邻接表复杂度O(nm),而邻接矩阵最坏情况下复杂度可达O(n^3). ...

  6. 二分图最大匹配的K&#246;nig定理及其证明

     二分图最大匹配的K?nig定理及其证明 本文将是这一系列里最短的一篇,因为我只打算把K?nig定理证了,其它的废话一概没有.    以下五个问题我可能会在以后的文章里说,如果你现在很想知道的话,网上 ...

  7. POJ3057 Evacuation(二分图最大匹配)

    人作X部:把门按时间拆点,作Y部:如果某人能在某个时间到达某门则连边.就是个二分图最大匹配. 时间可以二分枚举,或者直接从1枚举时间然后加新边在原来的基础上进行增广. 谨记:时间是个不可忽视的维度. ...

  8. ZOJ1654 Place the Robots(二分图最大匹配)

    最大匹配也叫最大边独立集,就是无向图中能取出两两不相邻的边的最大集合. 二分图最大匹配可以用最大流来解. 如果题目没有墙,那就是一道经典的二分图最大匹配问题: 把地图上的行和列分别作为点的X部和Y部, ...

  9. HDU:过山车(二分图最大匹配)

    http://acm.hdu.edu.cn/showproblem.php?pid=2063 题意:有m个男,n个女,和 k 条边,求有多少对男女可以搭配. 思路:裸的二分图最大匹配,匈牙利算法. 枚 ...

随机推荐

  1. linux系统怎么截图?linux系统中对指定区域进行截图的详细教程

    windows系统的截图相当简单,方法也很多,但是linux下截图已经成为了一个老大难问题,在windows下用惯了qq截图,到了linux下没了qq,那要怎么办呢,prt sc sysrq 键全屏截 ...

  2. Myeclipse中Tomcat的两种部署方式

    一.在Myeclipse软件中部署 1. 在Myeclipse中,创建好工程后,在Myeclipse菜单栏中选择 Windows -> Preferences -> Myeclipse - ...

  3. POI技术实现对excel的导出

    需求:客户端传来两个参数,当前页码和每页的条数,根据传来的参数实现对数据的导出 1.导入依赖 <!-- 报表相关 --> <dependency> <groupId> ...

  4. 【codevs1907】方格取数3(最大流最小割定理)

    网址:http://codevs.cn/problem/1907/ 题意:在一个矩阵里选不相邻的若干个数,使这些数的和最大. 我们可以把它看成一个最小割,答案就是矩阵中的所有数-最小割.先把矩阵按国际 ...

  5. 基于jetty镜像的ossfs镜像docker镜像构建

    阿里云ossfs:https://help.aliyun.com/document_detail/32196.html?spm=5176.product31815.6.514.yVI0xM 以上是阿里 ...

  6. neutron routers HA 实验

    测试环境: 5个节点(( controller,2  network,2 compute nodes)) 采用VXLAN+Linux Bridge 1. 确定所有的neutron和nova服务都在运行 ...

  7. aodh M版本新特性 - queue between alarm evaluator and alarm notifier

    之前alarm evaluator service and alarm notifier services之间的通信采用RPC的方式,消耗较大,增加work queue的方式可以获得更好的性能, + ...

  8. WPF各种控件详解——(WPF从我炫系列)

    http://blog.csdn.net/zx13525079024/article/details/5694638

  9. MVC。

    mvc 开启客户端 和 远程验证 <appSettings> <add key="ClientValidationEnabled" value="tru ...

  10. 数据结构录 之 单调队列&单调栈。(转)

    http://www.cnblogs.com/whywhy/p/5066306.html 队列和栈是很常见的应用,大部分算法中都能见到他们的影子. 而单纯的队列和栈经常不能满足需求,所以需要一些很神奇 ...