题目:https://www.luogu.org/problemnew/show/P3803

第一道FFT!

https://www.cnblogs.com/zwfymqz/p/8244902.html

http://www.cnblogs.com/RabbitHu/p/FFT.html

就是把系数转化为2*n个点值,点值相乘一下,再转化回2*n个系数的过程。

转化为点值的过程就是倍增一样,第一步是w_{1,0},也就是说x都是1,所以一开始2*n个位置上的点值都是原来的系数;然后变成两个一组取w_{2,0},w_{2,1}的点值,最后变成2*n个分别取w_{2*n,0},w_{2*n,1},......,w_{2*n,2*n-1}的点值。过程就是DFT,证明可见上面博客。

从点值转化回系数的方法和DFT差不多,似乎只要把 x 都变成倒数、做一边刚才的就行。变成倒数的方法就是那个Wn方向变成负的,这样 x^k 就是倒着转的,上面那个角标就一直是和原来相反的了。

最后算答案的时候似乎直接把虚数的部分舍弃了。

对于iDFT的证明还有点不明白。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define db double
using namespace std;
const int N=1e6+;const db pi=acos(-1.0);
int n,m,len,r[N<<];//<<2! for (n+m)<<1
struct cpl{
db x,y;
}I,a[N<<],b[N<<];
cpl operator+ (cpl a,cpl b){return (cpl){a.x+b.x,a.y+b.y};}
cpl operator- (cpl a,cpl b){return (cpl){a.x-b.x,a.y-b.y};}
cpl operator* (cpl a,cpl b){return (cpl){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};}
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='') ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return fx?ret:-ret;
}
void fft(cpl *a,bool fx)
{
for(int i=;i<len;i++)
if(i<r[i])swap(a[i],a[r[i]]);
for(int R=;R<=len;R<<=)//<=
{
int m=R>>;
cpl Wn=(cpl){ cos(pi/m),(fx?-:)*sin(pi/m) };
for(int i=;i<len;i+=R)
{
cpl w=I;
for(int j=;j<m;j++,w=w*Wn)
{
cpl tmp=w*a[i+m+j];
a[i+m+j]=a[i+j]-tmp;
a[i+j]=a[i+j]+tmp;
}
}
}
}
int main()
{
n=rdn(); m=rdn(); I.x=; I.y=;
for(int i=;i<=n;i++)a[i].x=rdn();
for(int i=;i<=m;i++)b[i].x=rdn();
len=;
while(len<=n+m)len<<=;//<=
for(int i=;i<len;i++)
r[i]=(r[i>>]>>)+((i&)?len>>:);
fft(a,); fft(b,);
for(int i=;i<len;i++)
a[i]=a[i]*b[i];
fft(a,);
for(int i=;i<=n+m;i++)
printf("%d ",int(a[i].x/len+0.5));puts("");
return ;
}

洛谷 3803 【模板】多项式乘法(FFT)的更多相关文章

  1. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  2. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  3. 洛谷.4512.[模板]多项式除法(NTT)

    题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...

  4. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  5. P3803 [模板] 多项式乘法 (FFT)

    Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...

  6. 洛谷 P4512 [模板] 多项式除法

    题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...

  7. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...

  8. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  9. 多项式乘法(FFT)学习笔记

    ------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法  ...

  10. [uoj#34] [洛谷P3803] 多项式乘法(FFT)

    新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_ ...

随机推荐

  1. mongodb简介和特性

    1.mongodb是基于文档的(BSON,类似json的键值对来存储),不是基于表格,易于水平扩展,将内部相关的数据放在一起能提高数据库的操作性能.如果你想新建一个新的文档类型,不用事先告诉数据库关于 ...

  2. Cocos2d-x项目移植到WP8系列之六:C#工程使用C++的DLL

    原文链接: http://www.cnblogs.com/zouzf/p/3984510.html 此时,一些大问题都被解决后,整个工程基本能跑起来了,最后一个大问题是:业务层是用Lua开发的,底层的 ...

  3. javax.servlet.jsp.JspException cannot be resolved to a type 和 javax.servlet.jsp.PageContext cannot be resolved to a type 解决办法

    今天我从码云上拉一个项目下来,是个maven项目,闲来无事自己研究研究,发现刚拉下来,项目就有报错,我一看是httpServletRequest cannot be resolved to a typ ...

  4. 算法总结之 在单链表和双链表中删除倒数第k个节点

    分别实现两个函数,一个可以删除单链表中倒数第k个节点,另一个可以删除双链表中倒数第k个节点 思路: 如果链表为空,或者k<1 参数无效 除此之外 让链表从头开始走到尾,每移动一步,就让k的值减1 ...

  5. 【P2015】二叉苹果树(树状DP)

    蒟蒻弱弱的开始做树形DP了,虽然做了这道题还是有很多不懂得地方. 这道题大意就是有一棵树,只保留其中q条边,求出剩余边的最大权值. 然后开始考虑怎么做(其实是看着题解出思路....),很容易可以想出D ...

  6. DL四(预处理:主成分分析与白化 Preprocessing PCA and Whitening )

    预处理:主成分分析与白化 Preprocessing:PCA and Whitening 一主成分分析 PCA 1.1 基本术语 主成分分析 Principal Components Analysis ...

  7. PAT1058. A+B in Hogwarts (20)

    #include <iostream> using namespace std; int ag,as,ak; int bg,bs,bk; int cg,cs,ck; int main(){ ...

  8. Vue v-if条件渲染

    1.简单的v-if指令,代码如下 <!DOCTYPE html> <html> <head lang="en"> <meta charse ...

  9. SQL Server集成服务最佳实践:语句优化

        SQL Server集成服务(SQL Server Integration Services,SSIS)在其前辈DTS(Data Transformation Services,数据转换服务) ...

  10. The 2016 ACM-ICPC Asia Dalian Regional Contest

    一共a了6题 A:找二分图,判断有没有冲突或者孤立的店 题解:直接dfs即可 #include<map> #include<set> #include<cmath> ...