题解:这道题要打一个乘标记一个加标记,两个标记的优先级是乘法高,所以在乘的时候要将加标记同时乘上一个c,当然,对于每个非完整块一定要记得暴力重构整个块,把加标记和乘标记都初始化.

代码如下:

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mod 10007
using namespace std; int tag1[],tag2[],lump[],a[];
int n,sz; void reset(int x)
{
for(int i=(x-)*sz+;i<=min(x*sz,n);i++)
{
a[i]=(a[i]*tag2[x]+tag1[x])%mod;
}
tag1[x]=;
tag2[x]=;
} void add(int l,int r,int c)
{
reset(lump[l]);
for(int i=l;i<=min(lump[l]*sz,r);i++)
{
a[i]+=c;
a[i]%=mod;
}
if(lump[l]!=lump[r])
{
reset(lump[r]);
for(int i=(lump[r]-)*sz+;i<=r;i++)
{
a[i]+=c;
a[i]%=mod;
}
}
for(int i=lump[l]+;i<=lump[r]-;i++)
{
tag1[i]+=c;
tag1[i]%=mod;
}
} void mul(int l,int r,int c)
{
reset(lump[l]);
for(int i=l;i<=min(lump[l]*sz,r);i++)
{
a[i]*=c;
a[i]%=mod;
}
if(lump[l]!=lump[r])
{
reset(lump[r]);
for(int i=(lump[r]-)*sz+;i<=r;i++)
{
a[i]*=c;
a[i]%=mod;
}
}
for(int i=lump[l]+;i<=lump[r]-;i++)
{
tag1[i]*=c;
tag1[i]%=mod;
tag2[i]*=c;
tag2[i]%=mod;
}
} int main()
{
int opt,l,r,c;
scanf("%d",&n);
sz=sqrt(n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
lump[i]=(i-)/sz+;
}
for(int i=;i<=lump[n];i++)
{
tag2[i]=;
}
for(int i=;i<=n;i++)
{
scanf("%d%d%d%d",&opt,&l,&r,&c);
if(!opt)
{
add(l,r,c);
}
else
{
if(opt==)
{
mul(l,r,c);
}
else
{
printf("%d\n",(a[r]*tag2[lump[r]]+tag1[lump[r]])%mod);
}
}
}
}

LibreOJ 6283 数列分块入门 7(区间加区间乘区间求和)的更多相关文章

  1. LOJ #6283. 数列分块入门 7-分块(区间乘法、区间加法、单点查询)

    #6283. 数列分块入门 7 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2   题目描述 给出 ...

  2. LibreOJ 6277. 数列分块入门 1 题解

    题目链接:https://loj.ac/problem/6277 题目描述 给出一个长为 \(n\) 的数列,以及 \(n\) 个操作,操作涉及区间加法,单点查值. 输入格式 第一行输入一个数字 \( ...

  3. LibreOJ 6278. 数列分块入门 2 题解

    题目链接:https://loj.ac/problem/6278 题目描述 给出一个长为 \(n\) 的数列,以及 \(n\) 个操作,操作涉及区间加法,询问区间内小于某个值 \(x\) 的元素个数. ...

  4. LibreOJ 6281 数列分块入门5

    题目链接:https://loj.ac/problem/6281 参考博客:https://blog.csdn.net/qq_36038511/article/details/79725027 我一开 ...

  5. LibreOJ 6280 数列分块入门 4(分块区间加区间求和)

    题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...

  6. LibreOJ 6281 数列分块入门 5(分块区间开方区间求和)

    题解:区间开方emmm,这马上让我想起了当时写线段树的时候,很显然,对于一个在2^31次方以内的数,开方7-8次就差不多变成一了,所以我们对于每次开方,如果块中的所有数都为一了,那么开方也没有必要了. ...

  7. LibreOJ 6285. 数列分块入门 9

    题目链接:https://loj.ac/problem/6285 其实一看到是离线,我就想用莫队算法来做,对所有询问进行分块,但是左右边界移动的时候,不会同时更新数字最多的数,只是后面线性的扫了一遍, ...

  8. LibreOJ 6277. 数列分块入门 1

    题目链接:https://loj.ac/problem/6277 参考博客:https://www.cnblogs.com/stxy-ferryman/p/8547731.html 两个操作,区间增加 ...

  9. LibreOJ 6277 数列分块入门 1(分块)

    题解:感谢hzwer学长和loj让本蒟蒻能够找到如此合适的入门题做. 这是一道非常标准的分块模板题,本来用打标记的线段树不知道要写多少行,但是分块只有这么几行,极其高妙. 代码如下: #include ...

随机推荐

  1. 深入浅出K-Means算法

    在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法. 问题 K-Means算法主要解决的问题如下图所示. ...

  2. FIR滤波器相关解释

    LTI(Linear Time-Invariant) 线性时不变: 线性时不变系统是根据系统输入和输出是否具有线性关系来定义的.满足叠加原理的系统具有线性特性.线性满足y=kx函数. 根据系统的输入和 ...

  3. unittest框架+ HTMLTestRunner 出报告时,展示控制台信息 不同展示的参数写法 加verbosity

    加verbosity参数 没有加的时候展示: 参考: 来源:  https://www.cnblogs.com/tomweng/p/6609937.html 介绍: HTMLTestRunner 是 ...

  4. mysql replication /mysql 主从复制原理

    一下内容均是根据leader的培训分享整理而成 ************************************我是分割线*********************************** ...

  5. Sql server 2008 R2 正在关闭[0x80041033]

    1. 事件起因, 昨天还访问的好好的, 然后系统一更新, 今天访问的时候, 就报什么 在与 SQL Server 建立连接时出现与网络相关的或特定于实例的错误.未找到或无法访问服务器.请验证实例名称是 ...

  6. zabbix短信监控

    [ ] zabbix-短信报警(参考http://hanyun.blog.51cto.com/1060170/1604918 ) [ ] zabbix-电话报警(参考http://dl528888.b ...

  7. 卷积神经网络之ResNet网络模型学习

    Deep Residual Learning for Image Recognition 微软亚洲研究院的何凯明等人 论文地址 https://arxiv.org/pdf/1512.03385v1.p ...

  8. 不使用sudo命令执行docker

    不使用sudo命令执行docker  2015-09-11 11:03:05  王春生  8049 最后编辑:王春生 于 2015-09-11 12:18:30 简介:本篇文章介绍如何不使用sudo命 ...

  9. 第十五章 MySQL日志(待续)

    ·······

  10. openstack 租户ip 手动配置 openstack静态租户ip

    作者:[吴业亮]云计算开发工程师 博客:http://blog.csdn.net/wylfengyujiancheng 1.综述: 在日常开发和生产环境中经常需要将OpenStack虚拟机配置一个静态 ...