calc

Time Limit: 30 Sec  Memory Limit: 512 MB
Submit: 377  Solved: 226
[Submit][Status][Discuss]

Description

  一个序列a1,...,an是合法的,当且仅当:
  长度为给定的n。
  a1,...,an都是[1,A]中的整数。
  a1,...,an互不相等。
  一个序列的值定义为它里面所有数的乘积,即a1a2...an。
  求所有不同合法序列的值的和。
  两个序列不同当且仅当他们任意一位不一样。
  输出答案对一个数mod取余的结果。

Input

  一行3个数,A,n,mod。意义为上面所说的。

Output

  一行结果。

Sample Input

9 7 10007

Sample Output

3611

HINT

数据规模和约定

  0:A<=10,n<=10。

  1..3:A<=1000,n<=20.

  4..9:A<=10^9,n<=20

  10..19:A<=10^9,n<=500。

  全部:mod<=10^9,并且mod为素数,mod>A>n+1

Source

不得不说dp设的也是十分好的,估计自己还想不出。

f[i][j]表示,前i个元素中,选择了j个的方案数,这个转移是怎么样的呢?

f[i][j]=f[i-1][j-1]*i*j+f[i-1][j],这个转移中的第二个十分显然,第一个是什么意思,就是选择了i这个元素,

插入到j中的任意一个位置,就是j个位置离随便哪个位置都可以,然后根据乘法的分配律,结合一下,就可以了。

当然j可以大于i,就因为i可以插到后面的位置。

就算想出了这一步,下面发现这个表是一个几次的多项式我基本上不可能会发现

某大佬打了这个表,然后这个多项式怎么搞出来的真的有点厉害

但是这个多项式是没用的,因为这个多项式的系数是变化的,所以没有什么用

有没有一个多项式的系数是不变的呢?
然后就有大佬发现了

发现了这个,即f[i][j]的系数只和j有关,是一个最高项系数是2*j的多项式,然后就稳了,

这样只需要求出2*n+1个点就可以插值了,朗格朗日插值求一下m这个位置的值即可。

 #include<cstring>
#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm> #define N 1007
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,m;
ll p,ans;
ll f[N][N]; ll fast_pow(ll a,ll b)
{
ll ans=;
while(b)
{
if (b&) (ans*=a)%=p;
(a*=a)%=p;
b>>=;
}
return ans;
}
void Lagrange()
{
for (int i=;i<=*n;i++)
{
ll s1=,s2=;
for (int j=;j<=*n;j++)
if (j!=i)
{
(s1*=(m-j))%=p;
(s2*=(i-j))%=p;
}
(ans+=f[i][n]*s1%p*fast_pow(s2,p-)%p)%=p;
}
}
int main()
{
m=read(),n=read(),p=read();
f[][]=;
for (int i=;i<=*n;i++)
{
f[i][]=f[i-][];
for (int j=;j<=n;j++)
f[i][j]=(f[i-][j-]*i%p*j+f[i-][j])%p;
}
if (m<=*n)
{
printf("%lld\n",f[m][n]);
return ;
} Lagrange();
ans=(ans%p+p)%p; printf("%lld\n",ans);
}

bzoj 2566 calc 拉格朗日插值的更多相关文章

  1. bzoj 2655 calc —— 拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...

  2. BZOJ 2655: calc(拉格朗日插值)

    传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f ...

  3. bzoj 2655 calc——拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先考虑DP.dp[ i ][ j ]表示值域为 i .选 j 个值的答案,则 dp[ ...

  4. P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析

    LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不 ...

  5. bzoj千题计划269:bzoj2655: calc (拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...

  6. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  7. 【BZOJ】2655: calc 动态规划+拉格朗日插值

    [题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...

  8. 【BZOJ2655】Calc(拉格朗日插值,动态规划)

    [BZOJ2655]Calc(多项式插值,动态规划) 题面 BZOJ 题解 考虑如何\(dp\) 设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案. \(f[i][j ...

  9. 【BZOJ2655】calc(拉格朗日插值)

    bzoj 题意: 给出\(n\),现在要生成这\(n\)个数,每个数有一个值域\([1,A]\).同时要求这\(n\)个数两两不相同. 问一共有多少种方案. 思路: 因为\(A\)很大,同时随着值域的 ...

随机推荐

  1. HDU暑假多校第四场J-Let Sudoku Rotate

    一.题意 Sudoku is a logic-based, combinatorial number-placement puzzle, which is popular around the wor ...

  2. python第三天(dictionary应用)转

    1.题目: python实现英文文章中出现单词频率的统计   前言: 这道题在实际应用场景中使用比较广泛,比如统计历年来四六级考试中出现的高频词汇,记得李笑来就利用他的编程技能出版过一本背单词的畅销书 ...

  3. Android之 GPS学习笔记

    ========================================GPS:全球定位系统 GPS由三部分组成:GPS卫星组成的空间部分,若干地面组成的控制站,用户手中的接收机.Androi ...

  4. react错误总结

    react-native 错误总结 The development server returned response error code: 500 in react-native https://b ...

  5. python json模块 超级详解

    JSON(JavaScript Object Notation, JS 对象标记) 是一种轻量级的数据交换格式.JSON的数据格式其实就是python里面的字典格式,里面可以包含方括号括起来的数组,也 ...

  6. python基础之列表解析

    python列表解析:是一个让人欣喜的术语,你可以在一行使用一个for循环将所有的值放在一个列表之中.python列表解析属于python的迭代中的一种,相比python for循环速度会快很多. e ...

  7. iOS-调用百度地图,苹果自带地图,高德地图,谷歌地图导航方法

    - (void)actionSheet : (ServiceNetworkModel *)model{ __block NSString *urlScheme = @"demoURI://& ...

  8. 个人作业4——alpha阶段个人总结(201521123103 吴雅娟)

    一.个人总结 在alpha 结束之后, 每位同学写一篇个人博客, 总结自己的alpha 过程: 请用自我评价表:http://www.cnblogs.com/xinz/p/3852177.html 有 ...

  9. SSH答疑解惑系列(三)——Struts2的异常处理

    Struts2的异常采用声明式异常捕捉,具体通过拦截器来实现. 在项目中,我们可以在Action中直接抛出异常,剩下的就交给Struts2的拦截器来处理了.当然,我们需要进行相关配置. Struts2 ...

  10. linux下搜索find命令拾遗

    强制删除项目下面的所有.svn文件目录,find . -name ‘.svn’ -exec rm -rf {} \; empty显示所有的空白文件,并显示详细:find . -empty size显示 ...