【BZOJ3450】Easy [期望DP]
Easy
Time Limit: 10 Sec Memory Limit: 128 MB
[Submit][Status][Discuss]
Description
某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(
我们来简化一下这个游戏的规则
有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有a*a分,comb就是极大的连续o。
比如ooxxxxooooxxx,分数就是2*2+4*4=4+16=20。
Sevenkplus闲的慌就看他打了一盘,有些地方跟运气无关要么是o要么是x,有些地方o或者x各有50%的可能性,用?号来表示。
比如oo?xx就是一个可能的输入。
那么WJMZBMR这场osu的期望得分是多少呢?
比如oo?xx的话,?是o的话就是oooxx => 9,是x的话就是ooxxx => 4
期望自然就是(4+9)/2 =6.5了
Input
第一行一个整数n,表示点击的个数
接下来一个字符串,每个字符都是ox?中的一个
Output
一行一个浮点数表示答案
四舍五入到小数点后4位
如果害怕精度跪建议用long double或者extended
Sample Input
????
Sample Output
HINT
n<=300000
Main idea
连续的o提供(次数)^2的贡献,x打断连续,?等概率出现o或x,求期望。
Solution
直接期望DP即可。连续的话,下一次的贡献就是:x^2-(x-1)^2 = 2x+1。
E[i]表示到现在为止累计的期望,?的话E/2,o的话E+1,x的话清零即可。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ; int n,m;
char ch[ONE];
double Ans,E[ONE]; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} int main()
{
n=get();
scanf("%s",ch+);
for(int i=;i<=n;i++)
{
if(ch[i] == 'o') Ans += 2.0*E[i]+, E[i+] = E[i] + ;
if(ch[i] == '?') Ans += (2.0*E[i]+)/2.0 , E[i+] = (E[i]+) / 2.0;
if(ch[i] == 'x') E[i+] = ;
}
printf("%.4lf", Ans);
}
【BZOJ3450】Easy [期望DP]的更多相关文章
- 【BZOJ3450】Tyvj1952 Easy 期望DP
[BZOJ3450]Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是 ...
- bzoj-3450 Easy概率DP 【数学期望】
Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a ...
- [BZOJ4318] WJMZBMR打osu! / Easy (期望DP)
题目链接 Solution Wa,我是真的被期望折服了,感觉这道题拿来练手正好. DP的难度可做又巧妙... 我们定义: \(f[i]\) 代表到第 \(i\) 次点击的时候的最大答案. \(g[i] ...
- BZOJ 3450 Tyvj1952 Easy ——期望DP
维护$x$和$x^2$的期望递推即可 #include <map> #include <ctime> #include <cmath> #include <q ...
- 洛谷P1365 WJMZBMR打osu! / Easy——期望DP
题目:https://www.luogu.org/problemnew/show/P1365 平方和怎样递推? 其实就是 (x+1)^2 = x^2 + 2*x + 1: 所以我们要关注这里的 x — ...
- 期望dp BZOJ3450+BZOJ4318
BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...
- 2018.08.30 Tyvj1952 Easy(期望dp)
Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连 ...
- 概率期望dp
对于概率dp,我一直都弄得不是特别明白,虽然以前也有为了考试去突击过,但是终究还是掌握得不是很好,所以决定再去学习一遍,把重要的东西记录下来. 1.hdu4405 Description 在一个 \( ...
- 2018.08.30 bzoj4318: OSU!(期望dp)
传送门 简单期望dp. 感觉跟Easy差不多,就是把平方差量进阶成了立方差量,原本维护的是(x+1)2−x2" role="presentation" style=&qu ...
随机推荐
- 深度分析如何在Hadoop中控制Map的数量(摘抄)
很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的 ...
- NB-IOT的键值对
1. 关于NB-IOT的软件开发,有一个功能,NB收到数据的时候可以唤醒处于低功耗下的MCU. 2. 2个键值对可以配置这个功能.使用键值对的方式. 3. 遇到的第一个问题,<config> ...
- What to do when Enterprise Manager is not able to connect to the database instance (ORA-28001)
摘自:http://dbtricks.com/?p=34 If you are trying to connect to the Oracle enterprise Manger and you ge ...
- 「日常训练」「小专题·USACO」 Ski Course Design (1-4)
题目 以后补 分析 mmp这题把我写蠢哭了 我原来的思路是什么呢? 每轮找min/max,然后两个决策:升min/降max 像这样子dfs找最优,然后花式剪枝 但是一想不对啊,这才1-4,哪有那么复杂 ...
- Assetbundle1
AssetBundle运行时加载:来自文件就用CreateFromFile(注意这种方法只能用于standalone程序)这是最快的加载方法也可以来自Memory,用CreateFromMemory( ...
- 不得不服!Python速度虽然慢,但是它工作效率很高!
写在前面 让我们来讨论一个我最近一直在思考的问题:Python 的性能.顺便说一下,我是 Python 的忠实拥趸,我在各种情况下都会积极尝试使用 Python 来解决问题.大家对 Python 最大 ...
- xamdin: 添加小组件报错: render() got an unexpected keyword argument 'renderer'
查找到 xadmin里面的 dashboard.py文件内render方法,增加一个rdnderer默认参数是None一般路径在 本机虚拟环境\Lib\site-packages\xadmin\vie ...
- (原创)不过如此的 DFS 深度优先遍历
DFS 深度优先遍历 DFS算法用于遍历图结构,旨在遍历每一个结点,顾名思义,这种方法把遍历的重点放在深度上,什么意思呢?就是在访问过的结点做标记的前提下,一条路走到天黑,我们都知道当每一个结点都有很 ...
- GraphSAGE 代码解析(四) - models.py
原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(一) - unsupervised_train.py GraphSAGE 代码解析(二) - layers.py ...
- hibernate和mybatis的之CRUD封装差别
hibernate和mybatis的之CRUD封装差别 以下讲的是基于MVC三层架构. 由于设计架构的差别,hibernate在实际编程中可以把基础的CRUD封装,比如BaseDao类.其它类只要去继 ...