暴力+构造

If r - l ≤ 4 we can all subsets of size not greater than k.
Else, if k = 1, obviously that answer is l. If k = 2,
answer is 1, because xor of numbers 2x and 2x + 1 equls 1.
If k ≥ 4 answer is 0 because xor of
to pairs with xor 1 is 0.

If k = 3, we can choose numbers 2x and 2x + 1 with xor 1.
So we need to know, if we can get xor equals 0. Suppose that
there are 3 such numbers xy and z (r ≥ x > y > z ≥ l)
with xor equals 0. Consider the most non-zero bit of numberx.
At the same bit of y it's also 1, because xor equls
0, and y > z. Consider the next bit of numbers. If z have 0 there,
we have to do next: set the previous bit of numbers x and y equals 0,
and set current bit equals 1. Obviously xor still equals
0, z hadn't changed and numbers x and y stood
closer to z, so they are still at [l, r].And x > y.Consider
the next bit of numbers. If z has zero here than we will change most bits of x и y at
the same way and so on. z > 0, so somewhen we will get to bit in which z has 1.
Since xorequals 0, the same bit of x would
be 1 because x > y, and y would
have 0 there. At the next bits we will change bit in x to 0,
and in numbers y and z to 1.Finally z would
be greater or equal than before, and x would be less or greater than before, and x > y > z would
be correct. So, we have the next: if such numbers xy and z exist
than also exist numbers:

1100…000

1011…111

0111…111

with xor equals 0. There are not much such triples, so we
can check them.

D. Little Victor and Set
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Little Victor adores the sets theory. Let us remind you that a set is a group of numbers where all numbers are pairwise distinct. Today Victor wants to find a set of integers S that
has the following properties:

  • for all x  the
    following inequality holds l ≤ x ≤ r;
  • 1 ≤ |S| ≤ k;
  • lets denote the i-th element of the set S as si;
    value  must
    be as small as possible.

Help Victor find the described set.

Input

The first line contains three space-separated integers l, r, k (1 ≤ l ≤ r ≤ 1012; 1 ≤ k ≤ min(106, r - l + 1)).

Output

Print the minimum possible value of f(S). Then print the cardinality of set |S|.
Then print the elements of the set in any order.

If there are multiple optimal sets, you can print any of them.

Sample test(s)
input
8 15 3
output
1
2
10 11
input
8 30 7
output
0
5
14 9 28 11 16
Note

Operation  represents
the operation of bitwise exclusive OR. In other words, it is the XOR operation.


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; typedef long long int LL; LL L,R,K;
LL ans=0x3f3f3f3f3f3f3f3f; int main()
{
cin>>L>>R>>K;
if(R-L+1<=4)
{
LL m=R-L+1;
LL sig=0;
for(LL i=1;i<(1LL<<m);i++)
{
LL temp=0;
LL wei=0;
LL si=i;
while(si)
{
wei++;
si=si&(si-1);
}
if(wei>K) continue;
for(LL j=0;j<m;j++)
{
if(i&(1LL<<j))
{
temp^=L+j;
}
}
if(temp<ans)
{
ans=temp;
sig=i;
}
}
cout<<ans<<endl;
LL wei=0;
LL tsig=sig;
while(tsig)
{
wei++;
tsig=tsig&(tsig-1);
}
cout<<wei<<endl;
for(LL i=0;i<m;i++)
{
if(sig&(1<<i))
{
cout<<L+i<<" ";
}
}
cout<<endl;
}
else
{
if(K==1)
{
cout<<L<<endl;
cout<<1<<endl;
cout<<L<<endl;
}
else if(K==2)
{
if(L%2) L++;
cout<<1<<endl;
cout<<2<<endl;
cout<<L<<" "<<L+1<<endl;
}
else if(K==3)
{
bool flag=false; LL mx=3,mi=1;
while(mx<=R)
{
if(mi>=L)
{
flag=true;
cout<<0<<endl<<3<<endl;
cout<<mx<<" "<<mx-1<<" "<<mi<<endl;
break;
} mx<<=1LL;
mi<<=1LL; mi++;
} if(flag==false)
{
if(L%2) L++;
cout<<1<<endl;
cout<<2<<endl;
cout<<L<<" "<<L+1<<endl;
}
}
else
{
cout<<0<<endl;
cout<<4<<endl;
if(L%2) L++;
cout<<L<<" "<<L+1<<" "<<L+2<<" "<<L+3<<endl;
}
}
return 0;
}

Codeforces 460 D. Little Victor and Set的更多相关文章

  1. Codeforces 460 DE 两道题

    D Little Victor and Set 题目链接 构造的好题.表示是看了题解才会做的. 假如[l,r]长度不超过4,直接暴力就行了. 假如[l,r]长度大于等于5,那么如果k = 1,显然答案 ...

  2. codeforces 460D:Little Victor and Set

    Description Little Victor adores the sets theory. Let us remind you that a set is a group of numbers ...

  3. Codeforces 460D Little Victor and Set(看题解)

    Little Victor and Set 其他都很好求, 只有k == 3的时候很难受.. 我们找到第一个不大于l的 t, 答案为 l, 3 * t, (3 * t) ^ l 感觉好像是对的, 感觉 ...

  4. Codeforces Round #483 (Div. 2) [Thanks, Botan Investments and Victor Shaburov!]

    题目链接:http://codeforces.com/contest/984 A. Game time limit per test:2 seconds memory limit per test:5 ...

  5. Codeforces 460D. Little Victor and Set

    D. Little Victor and Set time limit per test:1 second memory limit per test:256 megabytes input:stan ...

  6. Codeforces Round #460 (Div. 2) E. Congruence Equation (CRT+数论)

    题目链接: http://codeforces.com/problemset/problem/919/E 题意: 让你求满足 \(na^n\equiv b \pmod p\) 的 \(n\) 的个数. ...

  7. Codeforces 460D Little Victor and Set --分类讨论+构造

    题意:从区间[L,R]中选取不多于k个数,使这些数异或和尽量小,输出最小异或和以及选取的那些数. 解法:分类讨论. 设选取k个数. 1. k=4的时候如果区间长度>=4且L是偶数,那么可以构造四 ...

  8. codeforces 460D Little Victor and Set(构造、枚举)

    最近的CF几乎都没打,感觉挺水的一个题,不过自己仿佛状态不在,看题解才知道做法. 输入l, r, k (1 ≤ l ≤ r ≤ 1012; 1 ≤ k ≤ min(106, r - l + 1)). ...

  9. Codeforces Round #460 D. Karen and Cards

    Description Karen just got home from the supermarket, and is getting ready to go to sleep. After tak ...

随机推荐

  1. Java源码阅读PriorityQueue

    1类签名与简介 public class PriorityQueue<E> extends AbstractQueue<E> implements java.io.Serial ...

  2. Druid对比Impala/Shark

    Druid 和 Impala Shark 的对比取决于产品要求, 取决于系统是设计成做什么的 Druid 被设计成 一直在线, 高可用性    实时插入数据    分片分块形式的任意查询据我所知 Im ...

  3. 对帝国cms、dedecms、phpcms等负载测试总结

    来自:http://www.chinaz.com/web/2013/0729/311360.shtml 担心被骂,本不想写这篇文章.犹豫良久,最终还是决定写.希望能够帮助到一些朋友,认识到数据库索引正 ...

  4. lodash 判断相等 eq isEqual

    var object = { 'a': 1 }; var other = { 'a': 1 }; //true console.log(_.eq(object, object)) //true con ...

  5. SpringMVC+Maven开发项目源码详细介绍

    代码地址如下:http://www.demodashi.com/demo/11638.html Spring MVC概述 Spring MVC框架是一个开源的Java平台,为开发强大的基于Java的W ...

  6. 《DirectX 9.0 3D游戏开发编程基础》 第二章 绘制流水线 读书笔记

    模型的表示 场景:物品或模型的集合 任何物品都可以用三角形网络逼近表示.我们经常用以下术语描述三角形网络:多边形(polygons).图元(primitives).网络几何单元(mesh geomet ...

  7. 正则化--L1正则化(稀疏性正则化)

    稀疏矢量通常包含许多维度.创建特征组合会导致包含更多维度.由于使用此类高维度特征矢量,因此模型可能会非常庞大,并且需要大量的 RAM. 在高维度稀疏矢量中,最好尽可能使权重正好降至 0.正好为 0 的 ...

  8. STM32 通用T2、T3、T4、T5定时器详解

    定时器初始化配置 void TIM3_Configuration(void)//1MS { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_DeI ...

  9. 在Telerik for silverlight控件radtreeview中如何通过路径得到节点(转载)

    页面<telerik:RadTreeView Margin="8" x:Name="radTreeView" SelectionChanged=" ...

  10. jsdoc — js注释

    官方文档 http://usejsdoc.org/ - sublime插件 https://github.com/spadgos/sublime-jsdocs - 生成文档 生成html: (1)安装 ...