lucene中facet实现统计分析的思路——本质上和word count计数无异,像splunk这种层层聚合(先filed1统计,再field2统计,最后field3统计)lucene是排序实现
http://stackoverflow.com/questions/185697/the-most-efficient-way-to-find-top-k-frequent-words-in-a-big-word-sequence
http://www.geeksforgeeks.org/find-the-k-most-frequent-words-from-a-file/
http://cs.stackexchange.com/questions/26427/word-frequency-with-ordering-in-on-complexity
思路大致如下:
(1)hash表统计单词出现次数,然后寻找top k出现的,其中top k可以使用n*log(k)的堆思路,或者快排思路,或者是桶排序思路(以前fbt里实现实时的积分排序);
(2)使用trie来统计单词出现次数,然后便利trie,利用堆排序思路求top k;
(3)使用桶排序,尤其是当你知道最大出现次数时候,类似以前做fbt实现的实时积分排序,然后从大到小取出top k;
(4)用map reduce。
(5)直接排序,然后统计。
如果只是统计top K上面的思路没有任何问题,如果是统计所有的呢?则时间复杂度无疑是n*log(n),相当于是排序了,和5一样!
lucene里是如何做的呢?
下面三篇文章针对源码分析提到了:
http://wandzk.iteye.com/blog/2187858
http://wandzk.iteye.com/blog/2187975
http://wandzk.iteye.com/blog/2188229
摘录最核心和本质的东西:
例子中有如下docs:
Doc0:
doc.add(new SortedSetDocValuesFacetField("Author", "Bob"));
doc.add(new SortedSetDocValuesFacetField("Publish Year", "2010"));
Doc1:
doc.add(new SortedSetDocValuesFacetField("Author", "Lisa"));
doc.add(new SortedSetDocValuesFacetField("Publish Year", "2010"));
Doc2:
doc.add(new SortedSetDocValuesFacetField("Author", "Lisa"));
doc.add(new SortedSetDocValuesFacetField("Publish Year", "2012"));
Doc3:
doc.add(new SortedSetDocValuesFacetField("Author", "Susan"));
doc.add(new SortedSetDocValuesFacetField("Publish Year", "2012"));
Doc4:
doc.add(new SortedSetDocValuesFacetField("Author", "Frank"));
doc.add(new SortedSetDocValuesFacetField("Publish Year", "1999")); 根据上章分析所有的dim(就是filed name,此处为author和publish year),label(filed value) 将会拼接在一起,而且生成termid, 其term id 与term对应关系如下:
(注lucene存贮字符串是用utf8存储为了便于理解这里还是用字符串显示但是中间分隔符是1f)
----- "Author1fBob"
----- "Publish Year1f2010"
----- "Author1fLisa"
----- "Publish Year1f2012"
----- "Author1fSusan"
----- "Author1fFrank"
----- "Publish Year1f1999" sortedValues 在排序后就是: [0, 5, 2, 4, 6, 1, 3]
同时它会记录每个doc id对应的所有term ids,因为每个filed value都有filed id嘛!
lucene做聚合的本质是:排序!例如要实现聚合:先filed1统计,再field2统计,最后field3统计。那么lucene的处理思路是filed1+2+3所有的字段值都事先排序!(当然,要先设置好filed1,2,3是facet filed,动态设置应该不支持!)
搜索的时候,根据搜索到的所有id,去filed1+2+3字段值排序好的来过滤,例如先过滤所有包含field1的,针对排序做统计!
针对单个filed1聚合的时间复杂度:(字段123所有的数值)*log(字段123所有的数值);后续的聚合分析,例如再针对filed2聚合,排序来做!
lucene中facet实现统计分析的思路——本质上和word count计数无异,像splunk这种层层聚合(先filed1统计,再field2统计,最后field3统计)lucene是排序实现的更多相关文章
- Solr中Facet用法和Group用法
Group分组划分结果,返回的是分组结果: Facet分组统计,侧重统计,返回的是分组后的数量: 一.Group用法: //组查询基础配置params.set(GroupParams.GROUP, & ...
- 详细分析 Java 中实现多线程的方法有几种?(从本质上出发)
详细分析 Java 中实现多线程的方法有几种?(从本质上出发) 正确的说法(从本质上出发) 实现多线程的官方正确方法: 2 种. Oracle 官网的文档说明 方法小结 方法一: 实现 Runnabl ...
- 【Lucene3.6.2入门系列】第03节_简述Lucene中常见的搜索功能
package com.jadyer.lucene; import java.io.File; import java.io.IOException; import java.text.SimpleD ...
- Lucene中的 Query对象
"Lucene中的 Query对象": 检 索前,需要对检索字符串进行分析,这是由queryparser来完成的.为了保证查询的正确性,最好用创建索引文件时同样的分析器. quer ...
- lucene 中关于Store.YES 关于Store.NO的解释
总算搞明白 lucene 中关于Store.YES 关于Store.NO的解释了 一直对Lucene Store.YES不太理解,网上多数的说法是存储字段,NO为不存储. 这样的解释有点郁闷:字面意 ...
- solr中facet及facet.pivot理解(整合两篇文章保留参考)
Facet['fæsɪt]很难翻译,只能靠例子来理解了.Solr作者Yonik Seeley也给出更为直接的名字:导航(Guided Navigation).参数化查询(Paramatic Searc ...
- solr中facet及facet.pivot理解
Facet['fæsɪt]很难翻译,只能靠例子来理解了.Solr作者Yonik Seeley也给出更为直接的名字:导航(Guided Navigation).参数化查询(Paramatic Searc ...
- Lucene 中自定义排序的实现
使用Lucene来搜索内容,搜索结果的显示顺序当然是比较重要的.Lucene中Build-in的几个排序定义在大多数情况下是不适合我们使用的.要适合自己的应用程序的场景,就只能自定义排序功能,本节我们 ...
- Lucene 中的Tokenizer, TokenFilter学习
lucene中的TokenStream,TokenFilter之间关系 TokenStream是一个能够在被调用后产生语汇单元序列的类,其中有两个类型:Tokenizer和TokenFilte ...
随机推荐
- 安装nginx包
1.二进制安装源码包,直接输入yum stall nginx -y就可以 2,后面会涉及路径,所以先查下nginx的路径rpm -ql nginx 3,进入bin目录进行设置 4, 5,查看系统自带的 ...
- MySQL的SQL MODE
SQL MODE:定义mysqld对约束等的响应行为: 查看当前模式: mysql> SHOW GLOBAL VARIABLES LIKE 'sql_mode'; 修改 ...
- hadoop学习第二天-了解HDFS的基本概念&&分布式集群的搭建&&HDFS基本命令的使用
一.HDFS的相关基本概念 1.数据块 1.在HDFS中,文件诶切分成固定大小的数据块,默认大小为64MB(hadoop2.x以后是128M),也可以自己配置. 2.为何数据块如此大,因为数据传输时间 ...
- windows下python调用c文件流程
1.新建fun.c文件和fun.h文件 #include <stdio.h> #include <stdlib.h> #include <string.h> int ...
- mysql数据库补充知识6 完整性约束
一 介绍 约束条件与数据类型的宽度一样,都是可选参数 作用:用于保证数据的完整性和一致性主要分为: PRIMARY KEY (PK) 标识该字段为该表的主键,可以唯一的标识记录 FOREIGN KEY ...
- 'is' in Python
在Python中应该避免将“is”运算符用于比较 像“数值”和“字符串”这种不可变的值.由于Python内部操作这些对象的方式,使得对这些对象使用“is”运算符的结果将是不可预测的. 下面以两个例子加 ...
- OpenCV图片拼接的两种方法
https://my.oschina.net/xiaot99/blog/226589 一.原图 1.jpg 2.jpg ...
- get_called_class--后期静态绑定("Late Static Binding")类的名称
get_called_class--后期静态绑定("Late Static Binding")类的名称 string get_called_class ( void ) 获取静态方 ...
- INSPIRED启示录 读书笔记 - 第29章 大公司如何创新
大公司实现创新的方法 20%法则:谷歌的程序员有20%的工作时间可以用来从事创新研究,这个方法最早是从施乐帕克研究所学来的.20%法则鼓励普通员工自己尝试各种想法,让员工打心底愿意倾注更多的激情和汗水 ...
- hql join
文章一: 1.用hql语句 ` String hql="select student.id, student.name ,class.name from student映射实体类名 as s ...