layout: post

title: 训练指南 UVALive - 5135 (双连通分量)

author: "luowentaoaa"

catalog: true

mathjax: true

tags:

- 双连通分量

- 图论

- 训练指南


Mining Your Own Business

UVALive - 5135

题意

在一张无向图中,将一些点涂上黑色,使得删掉图中任何一个点时,每个连通分量至少有一个黑点。问最少能涂几个黑点,并且在涂最少的情况下有几种方案。

显然,一定不能涂割点。对于每一个连通分量,如果有1个割点,则必须涂上分量内除割点之外的任意一个点,如果有多个(2个及以上)割点,则这个分量不需要涂色。如果整张图都没有割点,那么任选两个点涂色即可,之所以要涂两个,是要防止删掉的电恰是黑点的情况。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=998244353;
const int maxn=1e6+50;
const ll inf=0x3f3f3f3f3f3f3f3fLL; struct Edge{
int u,v;
};
///割顶 bccno 无意义
int pre[maxn],iscut[maxn],bccno[maxn],dfs_clock,bcc_cut;
vector<int>G[maxn],bcc[maxn];
stack<Edge>S;
int dfs(int u,int fa){
int lowu = pre[u] = ++dfs_clock;
int child = 0;
for(int i = 0; i < G[u].size(); i++){
int v =G[u][i];
Edge e = (Edge){u,v};
if(!pre[v]){ ///没有访问过
S.push(e);
child++;
int lowv = dfs(v, u);
lowu=min(lowu, lowv); ///用后代更新
if(lowv >= pre[u]){
iscut[u]=true;
bcc_cut++;bcc[bcc_cut].clear(); ///注意 bcc从1开始
for(;;){
Edge x=S.top();S.pop();
if(bccno[x.u] != bcc_cut){bcc[bcc_cut].push_back(x.u);bccno[x.u]=bcc_cut;}
if(bccno[x.v] != bcc_cut){bcc[bcc_cut].push_back(x.v);bccno[x.v]=bcc_cut;}
if(x.u==u&&x.v==v)break;
}
}
}
else if(pre[v] < pre[u] && v !=fa){
S.push(e);
lowu = min(lowu,pre[v]);
}
}
if(fa < 0 && child == 1) iscut[u] = 0;
return lowu;
}
void find_bcc(int n){
memset(pre, 0, sizeof(pre));
memset(iscut, 0, sizeof(iscut));
memset(bccno, 0, sizeof(bccno));
dfs_clock = bcc_cut = 0;
for(int i = 0; i < n;i++)
if(!pre[i])dfs(i,-1);
}
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
int n,Case=1;
int mx;
while(cin>>n&&n){
for(int i=0;i<2*n;i++)G[i].clear();
mx=-inf;
for(int i=0;i<n;i++){
int u,v;
cin>>u>>v;mx=max(mx,max(u,v));
u--,v--;
G[u].push_back(v);
G[v].push_back(u);
}
find_bcc(mx);
ll ans1=0,ans2=1;
for(int i=1;i<=bcc_cut;i++){
int cut_cnt=0;
for(int j=0;j<bcc[i].size();j++)
if(iscut[bcc[i][j]])cut_cnt++;
if(cut_cnt==1){
ans1++;
ans2*=(ll)(bcc[i].size()-cut_cnt);
}
}
if(bcc_cut==1){
ans1=2;
ans2=ll(bcc[1].size()*(bcc[1].size()*1LL-1LL)/2LL);
}
cout<<"Case "<<Case++<<": "<<ans1<<" "<<ans2<<endl;
}
return 0;
}

训练指南 UVALive - 5135 (双连通分量)的更多相关文章

  1. 训练指南 UVALive - 3523 (双联通分量 + 二分图染色)

    layout: post title: 训练指南 UVALive - 3523 (双联通分量 + 二分图染色) author: "luowentaoaa" catalog: tru ...

  2. 训练指南 UVALive - 4287 (强连通分量+缩点)

    layout: post title: 训练指南 UVALive - 4287 (强连通分量+缩点) author: "luowentaoaa" catalog: true mat ...

  3. 训练指南 UVALive - 3126(DAG最小路径覆盖)

    layout: post title: 训练指南 UVALive - 3126(DAG最小路径覆盖) author: "luowentaoaa" catalog: true mat ...

  4. 训练指南 UVALive - 3415(最大点独立集)

    layout: post title: 训练指南 UVALive - 3415(最大点独立集) author: "luowentaoaa" catalog: true mathja ...

  5. 训练指南 UVALive - 3989(稳定婚姻问题)

    ayout: post title: 训练指南 UVALive - 3989(稳定婚姻问题) author: "luowentaoaa" catalog: true mathjax ...

  6. 训练指南 UVALive - 4043(二分图匹配 + KM算法)

    layout: post title: 训练指南 UVALive - 4043(二分图匹配 + KM算法) author: "luowentaoaa" catalog: true ...

  7. 训练指南 UVALive - 5713(最小生成树 + 次小生成树)

    layout: post title: 训练指南 UVALive - 5713(最小生成树 + 次小生成树) author: "luowentaoaa" catalog: true ...

  8. 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树)

    layout: post title: 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树) author: "luowentaoaa" ca ...

  9. 训练指南 UVALive - 3713 (2-SAT)

    layout: post title: 训练指南 UVALive - 3713 (2-SAT) author: "luowentaoaa" catalog: true mathja ...

随机推荐

  1. 从零开始实现Vue简单的Toast插件

    在前端项目中,有时会需要通知.提示一些信息给用户,尤其是在后台系统中,操作的正确与否,都需要给与用户一些信息. 1. 实例 在Vue组件的methods内,调用如下代码 `this``.$toast( ...

  2. VS查看DLL接口

    应用程序Microsoft Visual Studio 2010的Visual Studio Tools文件夹中打开Visual Studio Command Prompt (2010)命令窗口 du ...

  3. Visual Studio调试之断点技巧篇

    原文链接地址:http://blog.csdn.net/Donjuan/article/details/4618717 函数断点 在前面的文章Visual Studio调试之避免单步跟踪调试模式里面我 ...

  4. 版本7以上IE以文件夹视图方式打开FTP的解决

    一.问题的提出 版本7以上IE浏览器打开FTP时只出现列表 二.问题的解决 设置ie浏览器选项即可,以ie9为例,设置步骤如下: 1.启动ie,点击设置按钮,弹出菜单选择internet选项命令: 2 ...

  5. C++开源库,欢迎补充。

    转载自:http://blog.csdn.net/kobejayandy/article/details/8681741 C++在"商业应用"方面,曾经是天下第一的开发语言,但这一 ...

  6. ubuntu12.04回归到经典的gnome界面

    要想删除Unity恢复到经典Gnome桌面也很简单,几乎就是一条命令的事情--命令这种东西虽然不直观,但非常可靠和快捷,同时按住Ctrl+Alt+T三个键,调出系统终端,输入: sudoapt-get ...

  7. 【转载】深入理解PHP Opcode缓存原理

    转载地址:深入理解PHP Opcode缓存原理 什么是opcode缓存? 当解释器完成对脚本代码的分析后,便将它们生成可以直接运行的中间代码,也称为操作码(Operate Code,opcode).O ...

  8. Spring学习-- SpEL表达式

    Spring 表达式语言(简称SpEL):是一个支持运行时查询和操作对象图的强大的表达式语言. 语法类似于 EL:SpEL 使用 #{...} 作为定界符 , 所有在大括号中的字符都将被认为是 SpE ...

  9. linux网络编程系列-TCP/IP模型

    ### OSI:open system interconnection ### 开放系统互联网模型是由ISO国际标准化组织定义的网络分层模型,共七层 1. 物理层:物理定义了所有电子及物理设备的规范, ...

  10. webpack3基础知识

    ## 本地化安装webpack ## 1. npm init //npm初始化生成package.json文件 2. npm install --save-dev webpack //安装webpac ...