题目连接:http://poj.org/problem?id=2253

Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.
题目大意:
青蛙A想到B那里去,他通过跳石头的方式过去,给出A,B所在位置和石头位置的坐标,要求得出所有路径中最大距离的最小值(A要到B可以选择不同路径,每条路径跳跃若干石头,每条路径都会有一个最大跳跃距离,即该路径中最远的两块石头的距离,要求求出这些路径中最大跳跃距离的最小值)
解题思路:
最短路径变形,原来求单源最短路径算法中dis数组用来储存起点到该节点距离,现在可以用来储存到达该点的路径中最大距离的最小值,相应的松弛操作也要修改。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>

#define MAX 205
#define INF 0x3ffffff
using namespace std;

int n;
double x[MAX];
double y[MAX];
double d[MAX];
bool vis[MAX];

void init(void)
{
    memset(vis,,sizeof(vis));
    ;i<n;i++)
        d[i]=INF;
}

void dijkstra(void)
{
    d[]=;
    ;i<n;i++)
    {
        int now,m=INF;
        ;j<n;j++)
        {
            if(!vis[j]&&d[j]<m)
            {
                now=j;
                m=d[j];
            }
        }
        vis[now]=;
        ;j<n;j++)
        {
            int xx=abs(x[now]-x[j]);
            int yy=abs(y[now]-y[j]);
            double dis=sqrt(pow(xx,2.0)+pow(yy,2.0));
            d[j]=min(d[j],max(d[now],dis));
        }
    }
}

int main()
{
    ;
    while(scanf("%d",&n)!=EOF)
    {
        )
            ;
        T++;
        ;i<n;i++)
            scanf("%lf%lf",&x[i],&y[i]);
        init();
        dijkstra();
        cout<<"Scenario #"<<T<<endl;
        cout<<"Frog Distance = ";
        printf(]);
        cout<<endl;
    }
}

思考:对于类似的题目,如果是能够在节点之间转移的属性,应该都可以通过类似的方法求出来。

poj2253 最短路变形的更多相关文章

  1. POJ-2253 Frogger---最短路变形&&最大边的最小值

    题目链接: https://vjudge.net/problem/POJ-2253 题目大意: 青蛙A想访问青蛙B,必须跳着石头过去,不幸的是,B所在的石头太远了,需要借助其他的石头,求从A到B的路径 ...

  2. POJ-2253(最短路变形+dijikstra算法+求解所有路径中所有最长边中的一个最小值)

    frogger POJ-2253 这题的代码特别像prim求解最小生成树的代码,其实两者本来也很像. 这里的d数组不再维护的起点到该点的最短距离了,而是路径中的最长距离. #include<io ...

  3. POJ-2253.Frogger.(求每条路径中最大值的最小值,最短路变形)

    做到了这个题,感觉网上的博客是真的水,只有kuangbin大神一句话就点醒了我,所以我写这篇博客是为了让最短路的入门者尽快脱坑...... 本题思路:本题是最短路的变形,要求出最短路中的最大跳跃距离, ...

  4. POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...

  5. POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 Description After going through the receipts from your car trip ...

  6. POJ-1797Heavy Transportation,最短路变形,用dijkstra稍加修改就可以了;

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K          Description Background  Hugo ...

  7. HDOJ find the safest road 1596【最短路变形】

    find the safest road Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  8. HN0I2000最优乘车 (最短路变形)

    HN0I2000最优乘车 (最短路变形) 版权声明:本篇随笔版权归作者YJSheep(www.cnblogs.com/yangyaojia)所有,转载请保留原地址! [试题]为了简化城市公共汽车收费系 ...

  9. 天梯杯 PAT L2-001. 紧急救援 最短路变形

    作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图.在地图上显示有多个分散的城市和一些连接城市的快速道路.每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上.当其他城市有紧急求 ...

随机推荐

  1. sql数值比较

  2. Android Service的分类详解

    按照启动方式分类 谷歌官网对Service的分类 Service根据启动方式分为两类:Started和Bound.其中,Started()是通过startService()来启动,主要用于程序内部使用 ...

  3. DataBase -- FUNCTION

    SQL拥有很多课用于计数和计算的内建函数. SELECT function(列) FROM 表 合计函数(Aggregate Functions) Aggregate函数的操作面向一系列的值,并返回一 ...

  4. BZOJ4476 送礼物

    这道题真是有趣呀. 其实就是一个分数规划问题,用一个二分加log来得去掉分母. 分四种情况讨论 1.lenth > L && num ( max ) > num ( min ...

  5. [洛谷P3834] 【模板】可持久化线段树 1(主席树)

    题目大意:静态区间第K小 题解:主席树 卡点:无 C++ Code: #include <cstdio> #include <algorithm> #define maxn 2 ...

  6. 一个acm过来人的心得

    刻苦的训练我打算最后稍微提一下.主要说后者:什么是有效地训练? 我想说下我的理解.        很多ACMer入门的时候,都被告知:要多做题,做个500多道就变牛了.其实,这既不是充分条件.也不会是 ...

  7. BZOJ 2500 幸福的道路(race) 树上直径+平衡树

    structHeal { priority_queue<int> real; priority_queue<int> stack; void push(int x){ real ...

  8. [hdu 3652]数位dp解决数的倍数问题

    原以为很好的理解了数位dp,结果遇到一个新的问题还是不会分析,真的是要多积累啊. 解决13的倍数,可以根据当前余数来推,所以把当前余数记为一个状态就可以了. #include<bits/stdc ...

  9. linux内存条排查

    已发现2个内存错误,应用名称(kernel:),日志内容(hangzhou-jishuan-DDS0248 kernel: sbridge: HANDLING MCE MEMORY ERROR han ...

  10. js错误处理

    导致程序无法继续执行的异常状态称为错误. js中一旦发生错误,就会自动创建一个Error类型对象 js中有6中错误类型: SyntaxError 语法错误 ReferenceError 引用错误,找不 ...