Gopu and the Grid Problem

Gopu is interested in the integer co-ordinates of the X-Y plane (0<=x,y<=100000). Each integer coordinate contain a lamp, initially all the lamps are in off mode. Flipping a lamp means switching it on if it is in off mode and vice versa. Maggu will ask gopu 3 type of queries.

 

Type 1:  x l r,  meaning: flip all the lamps whose x-coordinate are between l and r (both inclusive) irrespective of the y coordinate.

 

Type 2:  y l r, meaning: flip all the lamps whose y-coordinate are between l and r (both inclusive) irrespective of the x coordinate.

 

Type 3: q x y X Y, meaning: count the number of lamps which are in ‘on mode’(say this number be A) and ‘off mode’ (say this number  be B) in the region where x-coordinate is between x and X(both inclusive) and y-coordinate is between y and Y(both inclusive).

Input

First line contains Q-number of queries that maggu will ask to gopu. (Q <= 10^5)

 

Then there will be Q lines each containing a query of one of the three type described above.

Output

For each query of 3rd type you need to output a line containing one integer A.

Example

Input:

3

x 0 1

y 1 2

q 0 0 2 2

 Output: 
 4
一开始想的是直接二维线段树或者二维树状数组搞一下,然后一看数据范围,GG。实在没办法看了网上的题解,用两个线段树分别处理行和列,然后查询的时候,再综合一下。
减去重叠的部分。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
typedef long long ll;
using namespace std;
const int N = 1e5+;
const int M = ;
typedef long long LL; int q;
struct Seg {
int Tree[N << ]; // 标记的行数/列数
bool lazy[N << ];
void init() {
memset(Tree, , sizeof(Tree));
memset(lazy, , sizeof(lazy));
}
inline void pushup(int rt) { Tree[rt] = Tree[rt << ] + Tree[rt << | ]; }
inline void pushdown(int pos,int len)
{
if(lazy[pos])
{
Tree[pos<<]=len-len/-Tree[pos<<];
Tree[pos<<|]=len/-Tree[pos<<|];
lazy[pos<<]^=;
lazy[pos<<|]^=;
lazy[pos]=;
}
return;
}
void update(int L,int R,int l,int r,int pos)
{
if(l>=L&&r<=R)
{
Tree[pos]=(r-l+)-Tree[pos];
lazy[pos]^=;
return;
}
int mid=(l+r)>>;
pushdown(pos,r-l+);
if(L<=mid) update(L,R,l,mid,pos<<);
if(mid<R)update(L,R,mid+,r,pos<<|);
pushup(pos);
}
int query(int L,int R,int l,int r,int pos)
{
if(L<=l&&r<=R)return Tree[pos];
int mid=(l+r)>>;
pushdown(pos,r-l+);
int ans=;
if(L<=mid) ans+=query(L,R,l,mid,pos<<);
if(R>mid) ans+=query(L,R,mid+,r,pos<<|);
return ans;
}
}row,col; int main() {
char op[];
int n = N;
row.init();
col.init();
int l,r,val;
int lx,ly,rx,ry;
char sign[];
int m;
scanf("%d",&m);
while(m--)
{
scanf("%s",sign);
if(sign[]=='x')
{
scanf("%d%d",&l,&r);
++l,++r;
row.update(l,r,,n,);
}
else if(sign[]=='y'){
scanf("%d%d",&l,&r);
++l,++r;
col.update(l,r,,n,);
}
else
{
scanf("%d%d%d%d",&lx,&ly,&rx,&ry);
++lx,++ly,++rx,++ry;
int nx=row.query(lx,rx,,n,);
int ny=col.query(ly,ry,,n,);
ll ans=(ll)(rx-lx+)*ny+(ll)(ry-ly+)*nx-(ll)*nx*ny;
printf("%lld\n",ans);
}
}
}

 

SPOJ IITWPC4F - Gopu and the Grid Problem (双线段树区间修改 区间查询)的更多相关文章

  1. spoj IITWPC4F - Gopu and the Grid Problem 线段树

    IITWPC4F - Gopu and the Grid Problem no tags  Gopu is interested in the integer co-ordinates of the ...

  2. SPOJ GSS2 - Can you answer these queries II(线段树 区间修改+区间查询)(后缀和)

    GSS2 - Can you answer these queries II #tree Being a completist and a simplist, kid Yang Zhe cannot ...

  3. SPOJ BGSHOOT - Shoot and kill (线段树 区间修改 区间查询)

    BGSHOOT - Shoot and kill no tags  The problem is about Mr.BG who is a great hunter. Today he has gon ...

  4. A Simple Problem with Integers POJ - 3468 线段树区间修改+区间查询

    //add,懒标记,给以当前节点为根的子树中的每一个点加上add(不包含根节点) // #include <cstdio> #include <cstring> #includ ...

  5. A Simple Problem with Integers-POJ3468 区间修改+区间查询

    题意: 给你n个数和2个操作,C操作是将一个区间内的每个数都加上k,Q操作是询问一个区间的和 链接:http://poj.org/problem?id=3468 思路: 线段树区间修改+区间查询 代码 ...

  6. POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询)

    POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询) 题意分析 注意一下懒惰标记,数据部分和更新时的数字都要是long long ,别的没什么大 ...

  7. HDU 5475(2015 ICPC上海站网络赛)--- An easy problem(线段树点修改)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5475 Problem Description One day, a useless calculato ...

  8. BZOJ-3212 Pku3468 A Simple Problem with Integers 裸线段树区间维护查询

    3212: Pku3468 A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 128 MB Submit: 1278 Sol ...

  9. SPOJ GSS3-Can you answer these queries III-分治+线段树区间合并

    Can you answer these queries III SPOJ - GSS3 这道题和洛谷的小白逛公园一样的题目. 传送门: 洛谷 P4513 小白逛公园-区间最大子段和-分治+线段树区间 ...

随机推荐

  1. 【17.12.22.B】

    B 题面描述: 给一个长度为n的序列,a[1], a[2], ... , a[n], 选出连续的k个数,使得这k个数的最大值加这k个数的or值最大. 假设选出的数为a[l], a[l + 1], .. ...

  2. mysql删除id最小的条目

    DELETE FROM 表1 WHERE Mid in (select Mid from (SELECT Min(Mid) Mid FROM 表1 c1) t1);

  3. wget命令下载FTP整个目录进行文件备份

    使用wget下载整个FTP目录,可以用于服务器间文件传输,进行远程备份.通过限制网速,可以解决带宽限制问题. #wget ftp://IP:PORT/* --ftp-user=xxx --ftp-pa ...

  4. 通俗解释IOC原理

    1. IoC理论的背景 我们都知道,在采用面向对象方法设计的软件系统中,它的底层实现都是由N个对象组成的,所有的对象通过彼此的合作,最终实现系统的业务逻辑. 图1:软件系统中耦合的对象 如果我们打开机 ...

  5. 【洛谷 P1364】医院设置(树的重心)

    树的重心的定义: 树若以某点为根,使得该树最大子树的结点数最小,那么这个点则为该树的重心,一棵树可能有多个重心. 树的重心的性质: 1.树上所有的点到树的重心的距离之和是最短的,如果有多个重心,那么总 ...

  6. [bzoj3990][SDOI2015]排序-搜索

    Brief Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<= ...

  7. swift c++ oc 混编

    http://www.tuicool.com/articles/QZNrErM iOS 里面 Swift与Objective-C混编,Swift与C++混编的一些比较 时间 2015-03-23 23 ...

  8. Makefile 變數替換

    Makefile SUBDIRS = xxx aaa BUILDSUBDIRS = $(SUBDIRS:%=build-%) CLEANSUBDIRS = $(SUBDIRS:%=clean-%) . ...

  9. Linux中生成Core Dump系统异常信息记录文件的教程

    Linux中生成Core Dump系统异常信息记录文件的教程 http://www.jb51.net/LINUXjishu/473351.html

  10. For循环中不可以嵌套RDD操作

    今天犯了一个致命理解错误,Spark中的RDD Map操作只是一个计算式的传递,并不是Action,也就是在for循环中不会产生真正的计算. 因此,如果for循环中出现了RDD的Map类似操作,都会引 ...