洛谷——P1722 矩阵 II
P1722 矩阵 II
题目背景
usqwedf 改编系列题。
题目描述
如果你在百忙之中抽空看题,请自动跳到第六行。
众所周知,在中国古代算筹中,红为正,黑为负……
给定一个1*(2n)的矩阵(usqwedf:这不是一个2n的队列么),现让你自由地放入红色算筹和黑色算筹,使矩阵平衡[即对于所有的i(1<=i<=2n),使第1~i格中红色算筹个数大于等于黑色算筹]
问有多少种方案满足矩阵平衡。
见样例解释。
输入输出格式
输入格式:
正整数 n
输出格式:
方案数t对100取模
输入输出样例
说明
样例解释: 红 黑 红 黑
红 红 黑 黑
1<=n<=100
这个题跟物理老师和生物老师排队是一样的,物理老师前面的生物老师的个数不能超过物理老师,用卡特兰数
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 1010
using namespace std;
int n,h[N];
int read()
{
,f=; char ch=getchar();
;ch=getchar();}
+ch-',ch=getchar();
return x*f;
}
int main()
{
n=read();h[]=h[]=;
;i<=n;i++)
;j<=i;j++)
h[i]=(h[j-]*h[i-j]%+h[i])%;
printf("%d",h[n]);
;
}
洛谷——P1722 矩阵 II的更多相关文章
- 洛谷P1722 矩阵 II(Catalan数)
P1722 矩阵 II 题目背景 usqwedf 改编系列题. 题目描述 如果你在百忙之中抽空看题,请自动跳到第六行. 众所周知,在中国古代算筹中,红为正,黑为负…… 给定一个1*(2n)的矩阵(us ...
- 洛谷 P1722 矩阵 II
题目背景 usqwedf 改编系列题. 题目描述 如果你在百忙之中抽空看题,请自动跳到第六行. 众所周知,在中国古代算筹中,红为正,黑为负…… 给定一个1*(2n)的矩阵(usqwedf:这不是一个2 ...
- 洛谷P1722 矩阵 II
题目背景 usqwedf 改编系列题. 题目描述 如果你在百忙之中抽空看题,请自动跳到第六行. 众所周知,在中国古代算筹中,红为正,黑为负…… 给定一个1*(2n)的矩阵(usqwedf:这不是一个2 ...
- 洛谷 P1005 矩阵取数游戏
题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...
- 洛谷——P1743 矩阵 III
P1743 矩阵 III 题目背景 usqwedf 改编系列题. 题目描述 给定一个n*m的矩阵,问从左上角走到右下角有多少条路径. 输入输出格式 输入格式: 一行两个正整数 n,m 输出格式: 路径 ...
- 洛谷P1005 矩阵取数游戏
P1005 矩阵取数游戏 题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次 ...
- 洛谷 [P1939] 矩阵加速数列
矩阵快速幂模版 #include <iostream> #include <cstring> #include <cstdlib> #include <alg ...
- 洛谷P1527 矩阵乘法——二维树状数组+整体二分
题目:https://www.luogu.org/problemnew/show/P1527 整体二分,先把所有询问都存下来: 然后二分一个值,小于它的加到二维树状数组的前缀和里,判断一遍所有询问,就 ...
- [NOIP2007] 提高组 洛谷P1005 矩阵取数游戏
题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...
随机推荐
- 51nod 1851俄罗斯方块(trick)
题目大意:给出一个黑白图,你可以选定一个俄罗斯方块的区域,黑白翻转,问能否变成白图 比较trick的题目, 首先可以想到,奇数个1肯定是无解的,所以考虑偶数个1 可以先讨论n是2的情况 当n为2时,其 ...
- How to Create a Perl Based Custom Monitor on NetScaler
How to Create a Perl Based Custom Monitor on NetScaler https://support.citrix.com/article/CTX227727 ...
- SPOJ Repeats(后缀数组+RMQ-ST)
REPEATS - Repeats no tags A string s is called an (k,l)-repeat if s is obtained by concatenating k& ...
- 周记【距gdoi:96天】
倒计时从三位数变成了两位数. 然后这周还是很不知道怎么说,经常写一道题写两天.但是总算把后缀数组写完了,也整理完了. 然后周末都不知道干了什么周末就过去了.无聊看了两道省选题发现都是不会做系列,看了以 ...
- CCmdUI
原文链接地址:http://blog.csdn.net/luicha/article/details/6771185 CCmdUI是一个只被使用于ON_UPDATECOMMAND_UI消息的响应函数中 ...
- BZOJ1293 [SCOI2009]生日礼物 【队列】
题目 小西有一条很长的彩带,彩带上挂着各式各样的彩珠.已知彩珠有N个,分为K种.简单的说,可以将彩带考虑为x轴,每一个彩珠有一个对应的坐标(即位置).某些坐标上可以没有彩珠,但多个彩珠也可以出现在同一 ...
- 写一个JavaScript“返回顶部”功能
在web页面中,如果页面较高,为了方便用户快速地返回顶部,都会添加一个返回顶部按钮. 效果演示可以查看本页.如果页面有滚动高度,右下角就会有一个含有“返回顶部”字样的黑色背景半透明的小条条.点击这里“ ...
- ZOJ3261:Connections in Galaxy War(逆向并查集)
Connections in Galaxy War Time Limit: 3 Seconds Memory Limit: 32768 KB 题目链接:http://acm.zju.edu. ...
- bzoj4589 FWT xor版本
4589: Hard Nim Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 865 Solved: 484[Submit][Status][Disc ...
- iOS 全局变量设置的几种方式~
在iOS开发过程中关于全局变量的几个方法 1. 在APPDelegate中声明并初始化全局变量.AppDelegate可以在整个应用程序中调用,在其他页面中可以使用代码段获取AppDelegate的全 ...