原题地址:https://codeforces.com/contest/1082/problem/G

G. Petya and Graph
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Petya has a simple graph (that is, a graph without loops or multiple edges) consisting of nn vertices and mm edges.

The weight of the ii-th vertex is aiai.

The weight of the ii-th edge is wiwi.

A subgraph of a graph is some set of the graph vertices and some set of the graph edges. The set of edges must meet the condition: both ends of each edge from the set must belong to the chosen set of vertices.

The weight of a subgraph is the sum of the weights of its edges, minus the sum of the weights of its vertices. You need to find the maximum weight of subgraph of given graph. The given graph does not contain loops and multiple edges.

Input

The first line contains two numbers nn and mm (1≤n≤103,0≤m≤1031≤n≤103,0≤m≤103) - the number of vertices and edges in the graph, respectively.

The next line contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤1091≤ai≤109) - the weights of the vertices of the graph.

The following mm lines contain edges: the ii-e edge is defined by a triple of integers vi,ui,wivi,ui,wi (1≤vi,ui≤n,1≤wi≤109,vi≠ui1≤vi,ui≤n,1≤wi≤109,vi≠ui). This triple means that between the vertices vivi and uiui there is an edge of weight wiwi. It is guaranteed that the graph does not contain loops and multiple edges.

Output

Print one integer — the maximum weight of the subgraph of the given graph.

Examples
input
4 5
1 5 2 2
1 3 4
1 4 4
3 4 5
3 2 2
4 2 2
output
8
input
3 3
9 7 8
1 2 1
2 3 2
1 3 3
output
0
Note

In the first test example, the optimal subgraph consists of the vertices 1,3,41,3,4 and has weight 4+4+5−(1+2+2)=84+4+5−(1+2+2)=8. In the second test case, the optimal subgraph is empty.

题意:一个有n个点m条边的图,每个点有相应的点权值,边有边权值。让你选择一些边,使得所选边权值总和减去所选边的端点的点权值总和的结果最大。

思路:

神奇网络流,将源点s向所有点连边,边权为点的权值,对于每条边,把它也看做一个点,并将它的两个端点与它连边,边权为无穷大,再将他与汇点t连边,边权为原来的边权。

设s、t为源点和汇点

对于边(id,u,v,  w)id表示第几条边,u、v表示它的两个端点,w表示边权,weight[u]表示点u的权值

add(s,u,weight[u]),add(s,v,weight[v]),add(u,id+n,inf),  add(v,id+n,inf),  add(id+n,t,w)(id+n是为了避免点和边重合了)

对于一条边,如果它的边权大于他两个端点的点权之和,那么就要减去它的两个端点点权之和,反之则舍弃掉这条边。

所以答案就是所有边的边权之和减去最小割。

代码:

#include<bits/stdc++.h>

#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define repp(i,a,b) for(int i=a;i<b;i++)
#define per(i,a,b) for(int i=a;i>=b;i--)
#define perr(i,a,b) for(int i=a;i>b;i--)
#define pb push_back
#define eb push_back
#define mst(a,b) memset(a,b,sizeof(a))
using namespace std; typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> P;
const int INF=0x3f3f3f3f;
const ll LINF=0x3f3f3f3f3f3f3f3f;
const double eps=1e-;
const double PI=acos(-1.0);
const double angcst=PI/180.0;
const ll mod=;
ll max_3(ll a,ll b,ll c){if(a>b&&a>c)return a;if(b>c)return b;return c;}
ll min_3(ll a,ll b,ll c){if(a<b&&a<c)return a;if(b<c)return b;return c;}
ll gcd(ll a,ll b){return b==?a:gcd(b,a%b);}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll qpow(ll a,ll n){ll r=;while(n){if(n&)r=(r*a)%mod;n>>=;a=(a*a)%mod;}return r;}
ll qmul(ll a,ll b){ll s=(long double)a/mod*b;s=a*b-s*mod;if(s<)s+=mod;if(s>=mod)s-=mod;return s;} template <typename _Tp> inline _Tp read(_Tp&x){
char c11=getchar(),ob=;x=;
while(c11^'-'&&!isdigit(c11))c11=getchar();if(c11=='-')c11=getchar(),ob=;
while(isdigit(c11))x=x*+c11-'',c11=getchar();if(ob)x=-x;return x;
}
int n,m; const int maxn=;
struct edge
{
ll v,cost,rev;//边的终点、边权、反向边
};
vector<edge>g[*maxn];//vector存图
ll deep[maxn];//表示源点到当前顶点的深度
ll iter[maxn];//当前弧,在其之前的边已经没有用了,避免了搜寻已经增广过的路径 void add(ll u,ll v,ll cost)//加边
{
g[u].pb((edge){v,cost,g[v].size()});
g[v].pb((edge){u,,g[u].size()-});
}
void bfs(int s)//建立分层网络,通过bfs计算从源点出发的距离标号
{
mst(deep,-);
queue<int>q;
deep[s]=;//源点深度为0
q.push(s);
while(!q.empty())
{
int v=q.front();q.pop();
for(int i=;i<g[v].size();i++)
{
edge &e=g[v][i];
if(e.cost>&&deep[e.v]==-)//如果还有容量能够到达i,并且i节点的深度未被标记
{
deep[e.v]=deep[v]+;
q.push(e.v);
}
}
}
}
ll dfs(ll v,ll t,ll f)//基于分层网络,通过dfs寻找增广路,x表示当前节点,f表示当前这条增广路径上的最小流量
{
if(v==t)return f;//找到汇点,返回
for(ll &i=iter[v];i<g[v].size();i++)
{
edge &e=g[v][i];
if(e.cost>&&deep[v]<deep[e.v])//找到能从v流通过去的相邻顶点
{
ll d=dfs(e.v,t,min(f,e.cost));
if(d>)
{
e.cost-=d;//更新残余网络
g[e.v][e.rev].cost+=d;//反向边
return d;
}
}
}
return ;//搜不到增广路径就返回0
}
ll dinic(ll s,ll t)//求s到t的最大流
{
ll flow=;
while()
{
bfs(s);
if(deep[t]<)return flow;//不存在分层网络,算法结束
mst(iter,);
ll f;
while((f=dfs(s,t,INF))>)
flow+=f;
}
} int main()
{
ll sum=;
read(n);read(m);
ll s=,t=+n+m,a;
rep(i,,n)
{
read(a);
add(s,i,a);
}
rep(i,,m)
{
ll u,v,w;
read(u);read(v);read(w);
add(u,i+n,LINF);
add(v,i+n,LINF);
add(i+n,t,w);
sum+=w;
}
printf("%lld\n",sum-dinic(s,t));
return ;
}

Petya and Graph/最大权闭合子图、最小割的更多相关文章

  1. codeforces 1082G - Petya and Graph 最大权闭合子图 网络流

    题意: 让你选一些边,选边的前提是端点都被选了,求所有的边集中,边权和-点权和最大的一个. 题解: 对于每个边建一个点,然后就是裸的最大权闭合子图, 结果比赛的时候我的板子太丑,一直T,(不会当前弧优 ...

  2. CodeForces 1082 G Petya and Graph 最大权闭合子图。

    题目传送门 题意:现在有一个图,选择一条边,会把边的2个顶点也选起来,最后会的到一个边的集合 和一个点的集合 , 求边的集合 - 点的集合最大是多少. 题解:裸的最大权闭合子图. 代码: #inclu ...

  3. 洛谷 P4174 [NOI2006]最大获利 && 洛谷 P2762 太空飞行计划问题 (最大权闭合子图 && 最小割输出任意一组方案)

    https://www.luogu.org/problemnew/show/P4174 最大权闭合子图的模板 每个通讯站建一个点,点权为-Pi:每个用户建一个点,点权为Ci,分别向Ai和Bi对应的点连 ...

  4. BZOJ 1565 / P2805 [NOI2009]植物大战僵尸 (最大权闭合子图 最小割)

    题意 自己看吧 BZOJ传送门 分析 - 这道题其实就是一些点,存在一些二元限制条件,即如果要选uuu则必须选vvv.求得到的权值最大是多少. 建一个图,如果选uuu必须选vvv,则uuu向vvv连边 ...

  5. 【最大权闭合子图 最小割】bzoj1497: [NOI2006]最大获利

    最大权闭合子图的模型:今天才发现dinic板子是一直挂的…… Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在 ...

  6. bzoj 1497 [NOI2006]最大获利【最大权闭合子图+最小割】

    不要被5s时限和50000点数吓倒!大胆网络流!我一个5w级别的dinic只跑了1s+! 看起来没有最大权闭合子图的特征--限制,实际上还是有的. 我们需要把中转站看成负权点,把p看成点权,把客户看成 ...

  7. 洛谷 P2762 太空飞行计划问题 【最大权闭合子图+最小割】

    --一道难在读入的题. 最后解决方案直接getline一行然后是把读优拆掉放进函数,虽然很丑但是过了. 然后就是裸的最大权闭合子图了,把仪器当成负权点向t连流量为其价格的边,s向实验连流量为实验报酬的 ...

  8. 【最大权闭合子图/最小割】BZOJ3438-小M的作物【待填】

    [题目大意] 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植 ...

  9. POJ 2987 Firing【最大权闭合图-最小割】

    题意:给出一个有向图,选择一个点,则要选择它的可以到达的所有节点.选择每个点有各自的利益或损失.求最大化的利益,以及此时选择人数的最小值. 算法:构造源点s汇点t,从s到每个正数点建边,容量为利益.每 ...

随机推荐

  1. 题解 CF785E 【Anton and Permutation】

    考虑用分块解决这个题,一次交换对当前逆序对个数的影响是,加上两倍的在区间\([l+1,r-1]\)中比\(a_r\)小的元素个数,减去两倍的在区间\([l+1,r-1]\)中比\(a_l\)小的元素个 ...

  2. php必须掌握的常用函数

    数学函数 数组函数 字符串函数

  3. JAXB XML生成CDATA类型的节点

    试了好久才找到一个解决办法,我是用的JAXB的,如果你们也是用JAXB那么可以直接借鉴此方法,别的方式你们自行测试吧 第一步:新增一个适配器类 package com.message.util; im ...

  4. redis配置密码

    一. 更改配置文件 找到requirepass这行, [soft@node5 redis-3.0.6]$ grep 'requirepass' redis.conf#requirepass fooba ...

  5. 【Django组件】WebSocket的简单实现

    1:HTML: <!DOCTYPE html><html lang="en"><head> <meta charset="UTF ...

  6. ken桑带你读源码 之scrapy scrapy\core\scheduler.py

    从英文来看是调度程序  我们看看是怎么调度 首先爬虫队列有两个 一个是保存在内存中  没有历史记录   重新开始  42行  self.mqs = self.pqclass(self._newmq) ...

  7. 02_HTML02

    学于黑马和传智播客联合做的教学项目 感谢 黑马官网 传智播客官网 微信搜索"艺术行者",关注并回复关键词"软件测试"获取视频和教程资料! b站在线视频 HTML ...

  8. Java锁_读写锁

    独占锁:是指锁一次只能被一个线程持有,ReentrantLock和Synchronized都是独占锁. 共享锁:是指锁可以被多个线程持有. 对于ReentrantReadWriteLock,其读锁是共 ...

  9. Flutter中的绘图(Canvas&CustomPaint)API

    本文是Flutter中Canvas和CustomPaint API的使用实例. 首先看一下我们要实现的效果: 结合动图演示,列出最终目标如下: 在程序运行后,显示一个小球: 每次程序启动后,小球的样式 ...

  10. Android运行时注入浅析与使用

    背景 最近接触新项目,项目中引入了Android Annotation(AA)依赖注入开源框架,代码中大片的注解代码,对于没用过注解框架(或者说没有如此大面积的使用)的我来说确实看得很费力,于是花时间 ...