leetcode-222完全二叉树的节点个数
题目
给出一个完全二叉树,求出该树的节点个数。
说明:
完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。
示例:
输入:
1
/ \
2 3
/ \ /
4 5 6
输出: 6
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/count-complete-tree-nodes
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
最容易想到的实现,计算出左子树的节点个数,计算出右子树的节点个数,然后两个结果相加再加上根节点个数。
代码:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int countNodes(TreeNode root) {
if(root==null){
return 0;
}
return countNodes(root.left)+countNodes(root.right)+1;
}
第二种方法:第一种方法虽然实现简单,但是没有用到题目所给出的完全二叉树的特点,完全二叉树最后一层如果没填满,那么节点都集中在左边,并且其余层的节点都是满的。所以,如果左子树的深度就和右子树的深度相等,那么左子树是满二叉树,那么,反过来,两者深度不等,那么右子树就是完全二叉树,需要计算出左子树的节点个数。完全二叉树的节点个数等于2^n-1
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int countNodes(TreeNode root) {
if(root==null){
return 0;
}
int left = getDepth(root.left); //获取左子树的深度
int right = getDepth(root.right); //获取右子树的深度
int res = 0;
if(left==right){ // 如果左子树深度和右子树深度相等,说明左子树最底层的节点已满既是 2的n次方 n代表左子树的深度
res = countNodes(root.right)+(1<<left);
}else{ // 如果不相等,右子树的节点按照满的计算
res = countNodes(root.left)+(1<<right);
}
return res;
}
public int getDepth(TreeNode node){
if(node==null){
return 0;
}
return Math.max(getDepth(node.left),getDepth(node.right))+1;
}
}
leetcode-222完全二叉树的节点个数的更多相关文章
- Java实现 LeetCode 222 完全二叉树的节点个数
222. 完全二叉树的节点个数 给出一个完全二叉树,求出该树的节点个数. 说明: 完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集 ...
- Leetcode 222.完全二叉树的节点个数
完全二叉树的节点个数 给出一个完全二叉树,求出该树的节点个数. 说明: 完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最 ...
- LeetCode 222.完全二叉树的节点个数(C++)
给出一个完全二叉树,求出该树的节点个数. 说明: 完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置.若最底 ...
- LeetCode 222. 完全二叉树的节点个数(Count Complete Tree Nodes)
题目描述 给出一个完全二叉树,求出该树的节点个数. 说明: 完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位 ...
- [LeetCode] 完全二叉树的节点个数
题目链接: https://leetcode-cn.com/problems/count-complete-tree-nodes 难度:中等 通过率:57.4% 题目描述: 给出一个 完全二叉树 ,求 ...
- [LeetCode] 222. Count Complete Tree Nodes 求完全二叉树的节点个数
Given a complete binary tree, count the number of nodes. Note: Definition of a complete binary tree ...
- Leetcode 222:完全二叉树的节点个数
题目 给出一个完全二叉树,求出该树的节点个数. 说明: 完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置. ...
- [LeetCode] Count Complete Tree Nodes 求完全二叉树的节点个数
Given a complete binary tree, count the number of nodes. Definition of a complete binary tree from W ...
- 222 Count Complete Tree Nodes 完全二叉树的节点个数
给出一个完全二叉树,求出该树的节点个数.完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置.若最底层为第 h ...
随机推荐
- STL-Vector容量问题:
1.clear,erase ,pop_back() 函数只删除对象,并没有释放vec中的内存,若对象是指针还需要delete:2.在erase,clear,pop_back()删除对象的后,size改 ...
- ARC109D - L
平面上一开始有三个点\((0,0),(0,1),(1,0)\)形成成L形(点连续),每次操作可以将一个点改变位置,使得得到的仍然是L形.给出终止L形的位置,问移动的最小步数. \(|x|,|y|\le ...
- 题解-洛谷P4859 已经没有什么好害怕的了
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...
- Node第三方模块nodemon和nrm
1.第三方模块nodemon nodemon是一个命令行工具,用以辅助项目开发. 在Node.js中,每次修改文件都要在命令行工具中重新执行该文件,非常繁琐,这时,nodemon就可以来解决这个问题. ...
- Servlet中获取请求参数问题
1.GET方法,可以通过getParamter方法反复获取同一个变量的数据: 2.POST方法,需要注意请求类型(content-Type)是否是application/x-www-form-urle ...
- 用正则怎么将html文件中文字取出进行ASCII码转换?
用正则怎么将html文件中文字取出?今天碰到这个问题,思来想去尝试了好几种方法,历经一阵头脑风暴,最后终于还是解决了,想想还是来记录一下.一共定义了三个函数,包含正则切割.正则判断对象开头.ASCII ...
- ORACLE 10g、11g批量刷新用户密码
一.ORACLE 10g批量刷新用户密码 select 'alter user ' || username ||' identified by values '''||password ||''';' ...
- Taro 3.1 beta 发布: 开放式架构新增 4 端支持
作者:凹凸曼-JJ 自 7 月初我们正式发布了 Taro 3,至今半年时间已然略去.期间我们不断地修复着问题,同时也在构想着下一个 minor 版本. 面对小程序平台越来越多的大环境,Taro 是选择 ...
- vue第十一单元(内置组件)
第十一单元(内置组件) #课程目标 熟练掌握component组件的用法 熟练使用keep-alive组件 #知识点 #1.component组件 component是vue的一个内置组件,作用是:配 ...
- codeforces 1443D,解法简单,思维缜密的动态规划问题
大家好,欢迎来到codeforces专题. 今天选择的问题是1443场次的D题,这题是全场倒数第三题,截止到现在一共通过了2800余人.这题的思路不算难,但是思考过程非常有趣,这也是这一期选择它的原因 ...