负载均衡算法模块主要的功能是从负载均衡器中获取服务器列表信息,根据算法选取出一个服务器。

IRule

  负载均衡算法接口

public interface IRule{
public Server choose(Object key);//选择一个服务器
public void setLoadBalancer(ILoadBalancer lb);//设置负载均衡器
public ILoadBalancer getLoadBalancer(); //获取负载均衡器
}

  通过BaseLoadBalancer的setRule或构造函数来为BaseLoadBalancer添加IRule

    public void setRule(IRule rule) {
if (rule != null) {
this.rule = rule;
} else {
/* default rule */
this.rule = new RoundRobinRule();
}
if (this.rule.getLoadBalancer() != this) {
this.rule.setLoadBalancer(this);
}
}

RandomRule

  生成一个随机数,从负载均衡器中选取一个服务器。

public Server choose(ILoadBalancer lb, Object key) {
if (lb == null) {
return null;
}
Server server = null;
while (server == null) {
if (Thread.interrupted()) {
return null;
}
List<Server> upList = lb.getReachableServers();
List<Server> allList = lb.getAllServers();
int serverCount = allList.size();
if (serverCount == 0) {
return null;
}
int index = rand.nextInt(serverCount);
server = upList.get(index);
if (server == null) {
Thread.yield();
continue;
}
if (server.isAlive()) {
return (server);
}
server = null;
Thread.yield();
}
return server;
}

RoundRobinRule

  轮询从负载均衡器中选取一个服务器。

public Server choose(ILoadBalancer lb, Object key) {
if (lb == null) {
log.warn("no load balancer");
return null;
}
Server server = null;
int count = 0;
while (server == null && count++ < 10) {
List<Server> reachableServers = lb.getReachableServers();
List<Server> allServers = lb.getAllServers();
int upCount = reachableServers.size();
int serverCount = allServers.size(); if ((upCount == 0) || (serverCount == 0)) {
log.warn("No up servers available from load balancer: " + lb);
return null;
}
int nextServerIndex = incrementAndGetModulo(serverCount);
server = allServers.get(nextServerIndex);
if (server == null) {
/* Transient. */
Thread.yield();
continue;
}
if (server.isAlive() && (server.isReadyToServe())) {
return (server);
}
server = null;
}
if (count >= 10) {
log.warn("No available alive servers after 10 tries from load balancer: "
+ lb);
}
return server;
}

BestAvailableRule

  选择并发量最小且没有被熔断的服务器,需要使用到LoadBalancerStats来获取服务器的状态。

public Server choose(Object key) {
if (loadBalancerStats == null) {
return super.choose(key);
}
List<Server> serverList = getLoadBalancer().getAllServers();
int minimalConcurrentConnections = Integer.MAX_VALUE;
long currentTime = System.currentTimeMillis();
Server chosen = null;
for (Server server: serverList) {
ServerStats serverStats = loadBalancerStats.getSingleServerStat(server);
if (!serverStats.isCircuitBreakerTripped(currentTime)) {
int concurrentConnections = serverStats.getActiveRequestsCount(currentTime);
if (concurrentConnections < minimalConcurrentConnections) {
minimalConcurrentConnections = concurrentConnections;
chosen = server;
}
}
}
if (chosen == null) {
return super.choose(key);
} else {
return chosen;
}
}

WeightedResponseTimeRule

  按照响应时间的比例来选择服务器。首先内部会有一个定时器,定时从负载均衡器里面读取服务器的平均响应时间,然后根据平均响应时间转换成权重。

class DynamicServerWeightTask extends TimerTask {
public void run() {
ServerWeight serverWeight = new ServerWeight();
try {
serverWeight.maintainWeights();
} catch (Exception e) {
logger.error("Error running DynamicServerWeightTask for {}", name, e);
}
}
}
class ServerWeight {
public void maintainWeights() {
ILoadBalancer lb = getLoadBalancer();
if (lb == null) {
return;
}
if (!serverWeightAssignmentInProgress.compareAndSet(false, true)) {
return;
}
try {
logger.info("Weight adjusting job started");
AbstractLoadBalancer nlb = (AbstractLoadBalancer) lb;
LoadBalancerStats stats = nlb.getLoadBalancerStats();
if (stats == null) {
return;
}
double totalResponseTime = 0;
// find maximal 95% response time
for (Server server : nlb.getAllServers()) {
// this will automatically load the stats if not in cache
ServerStats ss = stats.getSingleServerStat(server);
totalResponseTime += ss.getResponseTimeAvg();
}
// weight for each server is (sum of responseTime of all servers - responseTime)
// so that the longer the response time, the less the weight and the less likely to be chosen
Double weightSoFar = 0.0;
// create new list and hot swap the reference
List<Double> finalWeights = new ArrayList<Double>();
for (Server server : nlb.getAllServers()) {
ServerStats ss = stats.getSingleServerStat(server);
double weight = totalResponseTime - ss.getResponseTimeAvg();
weightSoFar += weight;
finalWeights.add(weightSoFar);
}
setWeights(finalWeights);
} catch (Exception e) {
logger.error("Error calculating server weights", e);
} finally {
serverWeightAssignmentInProgress.set(false);
} }
}

  然后根据权重来选择服务器

public Server choose(ILoadBalancer lb, Object key) {
if (lb == null) {
return null;
}
Server server = null;
while (server == null) {
// get hold of the current reference in case it is changed from the other thread
List<Double> currentWeights = accumulatedWeights;
if (Thread.interrupted()) {
return null;
}
List<Server> allList = lb.getAllServers();
int serverCount = allList.size();
if (serverCount == 0) {
return null;
}
int serverIndex = 0;
// last one in the list is the sum of all weights
double maxTotalWeight = currentWeights.size() == 0 ? 0 : currentWeights.get(currentWeights.size() - 1);
// No server has been hit yet and total weight is not initialized
// fallback to use round robin
if (maxTotalWeight < 0.001d) {
server = super.choose(getLoadBalancer(), key);
if(server == null) {
return server;
}
} else {
// generate a random weight between 0 (inclusive) to maxTotalWeight (exclusive)
double randomWeight = random.nextDouble() * maxTotalWeight;
// pick the server index based on the randomIndex
int n = 0;
for (Double d : currentWeights) {
if (d >= randomWeight) {
serverIndex = n;
break;
} else {
n++;
}
}
server = allList.get(serverIndex);
} if (server == null) {
/* Transient. */
Thread.yield();
continue;
} if (server.isAlive()) {
return (server);
} // Next.
server = null;
}
return server;
}

AvailabilityFilteringRule

  使用RoundRobinRule来选择服务器,并且通过AvailabilityPredicate进行筛选。AvailabilityPredicate会剔除熔断的和超过指定并发量的server。

public Server choose(Object key) {
int count = 0;
Server server = roundRobinRule.choose(key);
while (count++ <= 10) {
if (predicate.apply(new PredicateKey(server))) {
return server;
}
server = roundRobinRule.choose(key);
}
return super.choose(key);
}

  AvailabilityPredicate:

 public boolean apply(@Nullable PredicateKey input) {
LoadBalancerStats stats = getLBStats();
if (stats == null) {
return true;
}
return !shouldSkipServer(stats.getSingleServerStat(input.getServer()));
}
private boolean shouldSkipServer(ServerStats stats) {
if ((CIRCUIT_BREAKER_FILTERING.get() && stats.isCircuitBreakerTripped())
|| stats.getActiveRequestsCount() >= activeConnectionsLimit.get()) {
return true;
}
return false;
}

  使用AvailabilityFilteringRule涉及配置:

属性 实现 默认值
niws.loadbalancer.availabilityFilteringRule.filterCircuitTripped  是否剔除熔断server true

niws.loadbalancer.availabilityFilteringRule.activeConnectionsLimit

最大连接数 Integer.MAX_VALUE

ZoneAvoidanceRule

  这个rule虽然继承了PredicateBasedRule但是在使用上都与上面的rule不一样,其实他的核心主要是为ZoneAwareLoadBalancer提供了筛选zone的静态方法,他并不通用。

  静态方法getAvailableZones,会遍历所有的zone,以zone为单位,检查各个zone的实例个数,熔断比率,来决定是否包含改zone。

  静态方法createSnapshot,将LoadBalancerStats按zone返回map结构

类图

Predicate

  用于过滤服务器,ribbon提供了三个过滤条件,AvailabilityPredicate、ZoneAvoidancePredicate、ZoneAffinityPredicate。PredicateKey为过滤的参数。

ribbon源码(4) 载均衡算法的更多相关文章

  1. Spring Cloud Ribbon 源码分析---负载均衡算法

    上一篇分析了Ribbon如何发送出去一个自带负载均衡效果的HTTP请求,本节就重点分析各个算法都是如何实现. 负载均衡整体是从IRule进去的: public interface IRule{ /* ...

  2. Spring Cloud Ribbon源码分析---负载均衡实现

    上一篇结合 Eureka 和 Ribbon 搭建了服务注册中心,利用Ribbon实现了可配置负载均衡的服务调用.这一篇我们来分析Ribbon实现负载均衡的过程. 从 @LoadBalanced入手 还 ...

  3. ribbon源码(2) 负载均衡器

    负载均衡器对外提供负载均衡的功能,本质上是是维护当前服务的服务器列表和服务器状态,通过负载均衡算法选取合适的服务器地址. 用户可以通过实现ILoadBalancer来实现自己的负载均衡器,ribbon ...

  4. Ribbon源码分析(二)-- 服务列表的获取和负载均衡算法分析

    上一篇博客(https://www.cnblogs.com/yangxiaohui227/p/12614343.html)分享了ribbon如何实现对http://product/info/这个链接重 ...

  5. 【一起学源码-微服务】Ribbon 源码四:进一步探究Ribbon的IRule和IPing

    前言 前情回顾 上一讲深入的讲解了Ribbon的初始化过程及Ribbon与Eureka的整合代码,与Eureka整合的类就是DiscoveryEnableNIWSServerList,同时在Dynam ...

  6. 【一起学源码-微服务】Ribbon源码五:Ribbon源码解读汇总篇~

    前言 想说的话 [一起学源码-微服务-Ribbon]专栏到这里就已经全部结束了,共更新四篇文章. Ribbon比较小巧,这里是直接 读的spring cloud 内嵌封装的版本,里面的各种config ...

  7. ribbon源码(1) 概述

    ribbon的核心功能是提供客户端在进行网络请求时负载均衡的能力.主要有以下几个模块: 负载均衡器模块 负载均衡器模块提供了负载均衡能力,详细参见ribbon源码之负载均衡器. 配置模块 配置模块管理 ...

  8. Android开源项目 Universal imageloader 源码研究之Lru算法

    https://github.com/nostra13/Android-Universal-Image-Loader universal imageloader 源码研究之Lru算法 LRU - Le ...

  9. Spring源码加载过程图解(一)

    最近看了一下Spring源码加载的简装版本,为了更好的理解,所以在绘图的基础上,进行了一些总结.(图画是为了理解和便于记忆Spring架构) Spring的核心是IOC(控制反转)和AOP(面向切面编 ...

随机推荐

  1. Android 重写物理返回键,在h5页面中返回上一个界面

    实现:Activity中放置webview,跳转到h5界面,点击返回键,不退出h5界面,而是返回上一个h5界面 /** * 改写物理按键--返回的逻辑,希望浏览的网页后退而不是退出浏览器 * @par ...

  2. Vue源码解析,keep-alive是如何实现缓存的?

    前言 在性能优化上,最常见的手段就是缓存.对需要经常访问的资源进行缓存,减少请求或者是初始化的过程,从而降低时间或内存的消耗.Vue 为我们提供了缓存组件 keep-alive,它可用于路由级别或组件 ...

  3. jqgrid 获取选中用户的数据插入

    因为查询出的表和被插入的表不是在同一个数据库,所以先从前台jqgrid表格中获取到数据后,再插入表中. 实现: 获取到jqgrid选中 的每行数据之后,发ajax请求把数据以json格式传入后台,后台 ...

  4. 微信小程序内置组件web-view的缓存问题探讨

    前言:博客或者论坛上面,还有自习亲身经历,发现微信小程序的webview组件的页面缓存问题相当严重,对开发H5的小童鞋来说应该困扰了不少.很多小童鞋硬是抓破脑袋也没有办法解决这个问题,那我们今天就来探 ...

  5. Jmeter 常用函数(19)- 详解 __BeanShell

    如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.htm 作用 执行 BeanShell 脚本,并返回结 ...

  6. SpringBoot整合WebSocket实现前后端互推消息

    小编写这篇文章是为了记录实现WebSocket的过程,受不了啰嗦的同学可以直接看代码. 前段时间做项目时设计了一个广播的场景,具体业务不再赘述,最终要实现的效果就是平台接收到的信息实时发布给所有的用户 ...

  7. 牛客网PAT练兵场-查验身份证

    题解:模拟题,直接算 题目地址:https://www.nowcoder.com/questionTerminal/779a72a420744b1d9c0ec7b7a8dd8f39 /** * *作者 ...

  8. 一篇文章教会你使用Java8中的Lambda表达式

    简介 Java 8为开发者带来了许多重量级的新特性,包括Lambda表达式,流式数据处理,新的Optional类,新的日期和时间API等.这些新特性给Java开发者带来了福音,特别是Lambda表达式 ...

  9. Linux环境下MySQL 5.6安装与配置----亲测有效----纯离线安装

    一.安装MySQL 1.下载安装包 mysql-5.6.40-linux-glibc2.12-x86_64.tar.gz 下载地址: https://dev.mysql.com/get/Downloa ...

  10. 百度统计可以查看用户IP

    http://www.wocaoseo.com/thread-123-1-1.html 本文来源于百度官方报道,据悉百度统计披露了访客IP地址,小编乐不可支.比起之前欲说还休的访客标识码,百度统计这次 ...