Description

The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' (also known as 'Rock, Paper, Scissors', 'Ro, Sham, Bo', and a host of other names) in order to make arbitrary decisions such as who gets to be milked first.
They can't even flip a coin because it's so hard to toss using hooves.

They have thus resorted to "round number" matching. The first cow picks an integer less than two billion. The second cow does the same. If the numbers are both "round numbers", the first cow wins,

otherwise the second cow wins.

A positive integer N is said to be a "round number" if the binary representation of N has as many or more zeroes than it has ones. For example, the integer 9, when written in binary form, is 1001. 1001 has two zeroes and two ones; thus,
9 is a round number. The integer 26 is 11010 in binary; since it has two zeroes and three ones, it is not a round number.

Obviously, it takes cows a while to convert numbers to binary, so the winner takes a while to determine. Bessie wants to cheat and thinks she can do that if she knows how many "round numbers" are in a given range.

Help her by writing a program that tells how many round numbers appear in the inclusive range given by the input (1 ≤ Start < Finish ≤ 2,000,000,000).

Input

Line 1: Two space-separated integers, respectively Start and Finish.

Output

Line 1: A single integer that is the count of round numbers in the inclusive range Start..Finish

Sample Input

2 12

Sample Output

6

题意:一个数位round数,要满足这个数化成二进制后0的个数大于等于1的个数。

思路:先预处理出dp[i][j]表示前i位有j个0的方案数,然后从高位到低位数位dp就行了。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 805
ll dp[40][40];
void init()
{
int i,j;
memset(dp,0,sizeof(dp));
dp[1][1]=1;dp[1][0]=1;
for(i=1;i<=32;i++){
for(j=0;j<=i;j++){
dp[i+1][j]+=dp[i][j];
dp[i+1][j+1]+=dp[i][j];
}
}
} ll solve(int x)
{
int i,j,t=x;
int wei[40],len=0;
while(t){
wei[++len]=t%2;
t/=2;
} ll sum=0;
int num0=0,num1=0;
for(i=len-1;i>=1;i--){ //这里先把第len位变为0,然后一次枚举最高的位数在第i位
for(j=0;j<=i-1;j++){
if(j>=i-j)sum+=dp[i-1][j];
} } num1=1;
for(i=len-1;i>=1;i--){ //这里是在第len位为1的情况下进行dp
if(wei[i]==1){
if(i==1){
if(num0+1>=num1)sum++;
}
else{
for(j=0;j<=i-1;j++){
if(j+num0+1>=num1+i-1-j ){
sum+=dp[i-1][j];
}
}
}
num1++;
}
else num0++;
}
return sum;
}
int main()
{
int n,m,i,j;
init();
while(scanf("%d%d",&m,&n)!=EOF)
{
printf("%lld\n",solve(n+1)-solve(m));
}
return 0;
}

这题也可以用记忆化搜索做,搜索比直接dp要好些,而且用途广,写的时候在dfs中加一维zero,表示当前这一位是不是任然是前导0.用dp[pos][num0][num1]表示前pos位0的个数为num0,1的个数为num1方案数。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
int dp[35][35][35];
int wei[35];
int dfs(int pos,int num0,int num1,int lim,int zero)
{
int i,j;
if(pos==0){
if(zero==0){ //这里不判断zero==0也可以,判不判断的区别在于是不是把0算上,判断就不把0算上了
if(num0>=num1)return 1;
else return 0;
}
return 0;
/*
if(num0>=num1)return 1;
return 0;
*/
}
if(lim==0 && dp[pos][num0][num1]!=-1){
return dp[pos][num0][num1];
} int ed=lim?wei[pos]:1;
int ans=0,nu0,nu1;
for(i=0;i<=ed;i++){
if(zero && i==0){
nu0=nu1=0;
}
else{
if(i==0){
nu0=num0+1;
nu1=num1;
}
else{
nu0=num0;
nu1=num1+1;
}
}
ans+=dfs(pos-1,nu0,nu1,lim&&i==ed,zero&&i==0 );
}
if(lim==0){
dp[pos][num0][num1]=ans;
}
return ans;
} int solve(int x)
{
int i,j,tot=0;
while(x){
wei[++tot]=x%2;
x/=2;
}
return dfs(tot,0,0,1,1);
} int main()
{
int n,m,i,j;
memset(dp,-1,sizeof(dp));
while(scanf("%d%d",&m,&n)!=EOF)
{
printf("%d\n",solve(n)-solve(m-1));
}
return 0;
}

poj3252 Round Numbers (数位dp)的更多相关文章

  1. POJ3252 Round Numbers —— 数位DP

    题目链接:http://poj.org/problem?id=3252 Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Su ...

  2. poj3252 Round Numbers[数位DP]

    地址 拆成2进制位做dp记搜就行了,带一下前导0,将0和1的个数带到状态里面,每种0和1的个数讨论一下,累加即可. WA记录:line29. #include<iostream> #inc ...

  3. 【poj3252】 Round Numbers (数位DP+记忆化DFS)

    题目大意:给你一个区间$[l,r]$,求在该区间内有多少整数在二进制下$0$的数量$≥1$的数量.数据范围$1≤l,r≤2*10^{9}$. 第一次用记忆化dfs写数位dp,感觉神清气爽~(原谅我这个 ...

  4. [poj3252]Round Numbers_数位dp

    Round Numbers poj3252 题目大意:求一段区间内Round Numbers的个数. 注释:如果一个数的二进制表示中0的个数不少于1的个数,我们就说这个数是Round Number.给 ...

  5. poj 3252 Round Numbers(数位dp 处理前导零)

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  6. 4-圆数Round Numbers(数位dp)

    Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 14947   Accepted: 6023 De ...

  7. POJ 3252 Round Numbers(数位dp&amp;记忆化搜索)

    题目链接:[kuangbin带你飞]专题十五 数位DP E - Round Numbers 题意 给定区间.求转化为二进制后当中0比1多或相等的数字的个数. 思路 将数字转化为二进制进行数位dp,由于 ...

  8. POJ - 3252 - Round Numbers(数位DP)

    链接: https://vjudge.net/problem/POJ-3252 题意: The cows, as you know, have no fingers or thumbs and thu ...

  9. Round Numbers(数位DP)

    Round Numbers http://poj.org/problem?id=3252 Time Limit: 2000MS   Memory Limit: 65536K Total Submiss ...

随机推荐

  1. LeetCode 二分查找模板 II

    模板 #2: int binarySearch(vector<int>& nums, int target){ if(nums.size() == 0) return -1; in ...

  2. 常用的N个网站建议收藏

    类型网站路径学习资源及博客论坛网站 书栈网:https://www.bookstack.cn 52 download: http://www.52download.cn/wpcourse/ 菜鸟教程: ...

  3. SpringBoot同时接收单个对象和List<object>参数

    最近做项目的有个需求,是把多个文件移动到另一个文件夹下,这需要把 新的文件夹id -- Long类型 多个文件的信息 -- List< Object > 类型 这两个参数传给后台,我的后台 ...

  4. win10/windows 安装Pytorch

    https://pytorch.org/get-started/locally/ 去官网,选择你需要的版本. 把 pip install torch==1.5.0+cu101 torchvision= ...

  5. 基础Markdown语法

    Markdown语法 1.标题 //标题语法 # 一级标题 ## 二级标题 ### 三级标题 #### 四级标题 ##### 五级标题 ###### 六级标题 一级标题 二级标题 三级标题 四级标题 ...

  6. Docker Hub公共镜像仓库的使用

    创建账号并登陆这里是登陆入口 登陆账号 登陆进入之后里面目前仓库,现在去创建一个 下面我选的是公共仓库,别人也可以访问到 在服务器上登陆进来,进行上传镜像到仓库 [root@docker ~]# do ...

  7. Poj-P1088题解【动态规划/记忆化搜索】

    本文为原创,转载请注明:http://www.cnblogs.com/kylewilson/ 题目出处: http://poj.org/problem?id=1088 题目描述: 区域由一个二维数组给 ...

  8. 解决MyBatis-Plus 3.3.1中自动生成代码tinyint(1)无法自动转换为Boolean 的办法

    解决方法 1.在测试类中新建一个类MySqlTypeConvertCustom,继承MySqlTypeConvert并实现ITypeConvert后覆盖processTypeConvert方法. 2. ...

  9. Scrapy——將數據保存到MySQL數據庫

    Scrapy--將數據保存到MySQL數據庫 1. 在MySQL中創建數據庫表job_inf: 1 Create table job_inf( 2 id int(11) not null auto_i ...

  10. Edition-Based Redefinition

    Oracle在11g引入了Edition-Based Redefinition(EBR),主要是为了解决在更新数据库对象,比如PL/SQL程序,视图等,如果该对象被锁住了,会导致更新必须等待,如果要使 ...