hdu5432Rikka with Array (数位dp+十进制转化为二进制)
Yuta has an array A of
length n,and
the ith
element of A is
equal to the sum of all digits of i in
binary representation. For example,A[1]=1,A[3]=2,A[10]=2.
Now, Yuta wants to know the number of the pairs (i,j)(1≤i<j≤n) which
satisfy A[i]>A[j].
It is too difficult for Rikka. Can you help her?
number of the testcases.
For each testcase, the first line contains a number n(n≤10300).
10
When $n=10$, $A$ is equal to $1,1,2,1,2,2,3,1,2,2$.
So the answer is $7$.
题意:定义A[i]为i化为二进制后的1的个数,给你一个数n,你要在1~n之间找到两个数a,b,使得a<b且A[a]>A[b].问总共有多少这样的对数.
思路:这题和普通的数位dp不同,普通的数位dp是求单个数内的方案数,但是这道题是求对数,所以不能用之前的方法。这道题中我们要在记忆化搜索中同时枚举两个数,一个为大数,一个为小数,然后用dp[pos][cha][flag][same][lim]表示前pos位,大小两数化为二进制后1的个数差的绝对值为cha,flag表示是否小数化为二进制后的1的个数大于大数,same表示pos位前两个数是不是完全相同,lim表示大数是不是还有限制。据说题解只开了三维,感觉三维的条件太少了,我只会写五维的。。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 1005
#define MOD 998244353
char s[maxn];
int dp[maxn][maxn][2][2][2]; //dp[pos][cha][flag1][same][lim]表示前pos位,大小数1的个数差的绝对值是cha,小数中1的个数是不是大于大数中的个数
int wei[maxn],num[maxn];
int dfs(int pos,int cha,int flag,int same,int lim) //same表示大数和小数是不是前几位都一样
{
int i,j;
if(pos==0){
if(flag==1)return 1;
return 0;
}
if(dp[pos][cha][flag][same][lim]!=-1 ){
return dp[pos][cha][flag][same][lim];
}
int ans=0;
if(same==1){
if(lim==1){
if(wei[pos]==0){
ans=ans+dfs(pos-1,0,0,1,1); //都取0
if(ans>=MOD)ans-=MOD;
}
else if(wei[pos]==1){
ans=ans+dfs(pos-1,0,0,1,1);if(ans>=MOD)ans-=MOD; //都取1
ans=ans+dfs(pos-1,0,0,1,0);if(ans>=MOD)ans-=MOD; //都取0
ans=ans+dfs(pos-1,1,0,0,1);if(ans>=MOD)ans-=MOD; //大数取1,小数取0
}
}
else if(lim==0){
ans=ans+dfs(pos-1,0,0,1,0);if(ans>=MOD)ans-=MOD;
ans=ans+dfs(pos-1,0,0,1,0);if(ans>=MOD)ans-=MOD;
ans=ans+dfs(pos-1,1,0,0,0);if(ans>=MOD)ans-=MOD;
}
}
else if(same==0){
if(lim==1){
if(wei[pos]==1){
ans=ans+dfs(pos-1,cha,flag,same,0);if(ans>=MOD)ans-=MOD; //都加0
ans=ans+dfs(pos-1,cha,flag,same,1);if(ans>=MOD)ans-=MOD; //都加1
if(cha==0){
ans=ans+dfs(pos-1,1,0,same,1);if(ans>=MOD)ans-=MOD; //大数加1
ans=ans+dfs(pos-1,1,1,same,0);if(ans>=MOD)ans-=MOD; //小数加1
}
else if(cha>0){
if(flag==1){
int flag1;
if(cha==1)flag1=0;
else flag1=1;
ans=ans+dfs(pos-1,cha-1,flag1,same,1);if(ans>=MOD)ans-=MOD; //大数加1
ans=ans+dfs(pos-1,cha+1,1,same,0);if(ans>=MOD)ans-=MOD; //小数加1
}
else if(flag==0){
ans=ans+dfs(pos-1,cha+1,0,same,1 );if(ans>=MOD)ans-=MOD; //大数加1
ans=ans+dfs(pos-1,cha-1,0,same,0);if(ans>=MOD)ans-=MOD; //小数加1
}
}
}
else if(wei[pos]==0){
ans=ans+dfs(pos-1,cha,flag,same,1);if(ans>=MOD)ans-=MOD; //都加0
if(cha==0){
ans=ans+dfs(pos-1,cha+1,1,same,1);if(ans>=MOD)ans-=MOD; //大数加0,小数加1
}
else if(cha>0){
if(flag==1){
ans=ans+dfs(pos-1,cha+1,1,same,1);if(ans>=MOD)ans-=MOD;
}
else if(flag==0){
ans=ans+dfs(pos-1,cha-1,0,same,1);if(ans>=MOD)ans-=MOD;
}
}
}
}
else if(lim==0){
ans=ans+dfs(pos-1,cha,flag,same,0);if(ans>=MOD)ans-=MOD; //都加0
ans=ans+dfs(pos-1,cha,flag,same,0);if(ans>=MOD)ans-=MOD; //都加1
if(cha==0){
ans=ans+dfs(pos-1,1,0,same,0);if(ans>=MOD)ans-=MOD; //大数加1
ans=ans+dfs(pos-1,1,1,same,0);if(ans>=MOD)ans-=MOD; //小数加1
}
else if(cha>0){
if(flag==1){
int flag1;
if(cha==1)flag1=0;
else flag1=1;
ans=ans+dfs(pos-1,cha-1,flag1,same,0 );if(ans>=MOD)ans-=MOD; //大数加1
ans=ans+dfs(pos-1,cha+1,1,same,0);if(ans>=MOD)ans-=MOD; //小数加1
}
else if(flag==0){
ans=ans+dfs(pos-1,cha+1,0,same,0 );if(ans>=MOD)ans-=MOD; //大数加1
ans=ans+dfs(pos-1,cha-1,0,same,0);if(ans>=MOD)ans-=MOD; //小数加1
}
}
}
}
dp[pos][cha][flag][same][lim]=ans;
return ans;
}
void solve()
{
int i,j;
int len=strlen(s+1);
for(i=len;i>=1;i--){
num[i]=s[len+1-i]-'0';
}
int tot=0;
while(len){
for(i=len-1;i>=1;i--){
num[i]+=(num[i+1]&1)*10;
num[i+1]>>=1;
}
if(num[1]&1)wei[++tot]=1;
else wei[++tot]=0;
num[1]>>=1;
if(num[len]==0)len--;
}
memset(dp,-1,sizeof(dp)); //这里要注意,必须每一个样例都要初始化一遍,因为不同的数,dp[pos][cha][flag1][same][lim]的意义不同
printf("%d\n",dfs(tot,0,0,1,1)%MOD);
}
int main()
{
int n,m,i,j,T;
scanf("%d",&T);
while(T--)
{
scanf("%s",s+1);
solve();
}
return 0;
}
hdu5432Rikka with Array (数位dp+十进制转化为二进制)的更多相关文章
- 十进制转化为二进制Java实现
提取2的幂 这个方法用代码实现貌似有点麻烦,需要探测大小,我只实现了整数十进制到二进制的转化 /* * 提取2的幂 */ public static String TenToBin1(int ten) ...
- 用JS实现将十进制转化为二进制
- 数位dp从会打模板到不会打模板
打了几个数位$dp$,发现自己除了会打模板之外没有任何长进,遇到非模板题依然什么都不会 那么接下来这篇文章将介绍如何打模板(滑稽) 假设我们要处理$l----r$ 采用记忆化搜索的方式,枚举$< ...
- ACM学习历程—HDU5587 Array(数学 && 二分 && 记忆化 || 数位DP)(BestCoder Round #64 (div.2) 1003)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5587 题目大意就是初始有一个1,然后每次操作都是先在序列后面添加一个0,然后把原序列添加到0后面,然后 ...
- 浅谈数位DP
在了解数位dp之前,先来看一个问题: 例1.求a~b中不包含49的数的个数. 0 < a.b < 2*10^9 注意到n的数据范围非常大,暴力求解是不可能的,考虑dp,如果直接记录下数字, ...
- 初探数位dp
数位dp有着很明显的特点,一般来说是给定区间[l,r]求满足某种条件区间中的数有多少个 朴素解法一般是O(n)的而n往往很大(10^8起步) 这时候我们就要想办法优化,于是就有了数位dp 数位有两个基 ...
- 专题训练之数位DP
推荐以下一篇博客:https://blog.csdn.net/wust_zzwh/article/details/52100392 1.(HDOJ2089)http://acm.hdu.edu.cn/ ...
- Codeforces - 914C 数位DP
题意有点难以描述,简略的就是给定一个二进制\(n\),每一步操作能使\(n\)的位为1的数的和转化为一个十进制,然后转化为该数的二进制再进行相同的操作 查询\([0,n]\)中操作数恰好为\(k\)的 ...
- 开坑数位dp
[背景] 在10月3日的dp专练中,压轴的第6题是一道数位dp,于是各种懵逼. 为了填上这个留存已久的坑,蒟蒻chty只能开坑数位dp了. [例题一][HDU2089]不要62 题目大意:给你一个区间 ...
随机推荐
- 【MySQL】一台服务器上搭建两个mysql节点
环境: CentOS 6.8 memory:1G Mysql 5.7 二进制安装包 1.安装相关的环境包 yum -y install gcc glibc libaio libstdc++ libs ...
- 惠普电脑(HP PHILIPS系列)安装ubuntu后无法连接WIFI解决方案(手动安装8821CE驱动)
一步一步来, 先说环境: 我的电脑是HP PHILIPS系列,ubuntu版本是16.04 背景: win10安装ubuntu后发现无法连接wifi(但win10系统可以连接WIFI),在ubuntu ...
- ctfshow—web—web2
打开靶机,根据提示是SQL注入 打开后看到登录窗口 方法一.手工注入 抓取数据包 开始SQL注入测试 利用万能密码,登录成功 查看回显位置 查询数据库 查询数据库内数据表 如果想整齐一点显示可以添加g ...
- 镍氢可充电电池2.4V转3.3V,2V转3.3V稳压供电输出电路图
PW5100可以实现2.4V转3.3V,2V转3.3V的稳压电源电路,输出电流500MA.静态电流10uA,SOT23-5封装.输出纹波低,轻载性能高(轻载电感推荐6.8UH-10UH). PW510 ...
- mysqlG基于TID模式同步报错 (Last_IO_Errno: 1236)
mysqlG基于TID模式同步报错Last_IO_Errno: 1236 Last_IO_Error: Got fatal error 1236 from master when reading da ...
- TCP服务器程序
Linux下编写TCP服务器调用的函数顺序为:socket -> bind -> listen -> accept -> recv/send socket 参见:http:// ...
- 阿里 Mock 工具正式开源,干掉市面上所有 Mock 工具!
最近栈长注意到阿里开源了自家的 Mock 工具:TestableMock,该工具号称最轻量.简单.舒适的 Mock 测试工具,功能十分强大,媲美 PowerMock,用法比 Mockito 还要简洁, ...
- 前端面试准备笔记之JavaScript(01)
1.1 typeof 能判断哪些类型? typeof可以识别所有的值类型 typeof可以识别函数 //function typeof可以判断是否是引用类型(不可以再细分) //object 1.2 ...
- 从零搭建一个IdentityServer——集成Asp.net core Identity
前面的文章使用Asp.net core 5.0以及IdentityServer4搭建了一个基础的验证服务器,并实现了基于客户端证书的Oauth2.0授权流程,以及通过access token访问被保护 ...
- ubuntu更新下载软件卡住0% [Connecting to archive.ubuntu.com (2001:67c:1360:8001::23)]
一台ubuntu系统,查看硬件和配置环境的时候发现下载卡住了 根据提示就是有ipv6地址,系统也是配置了ipv6地址的.海外机器,而且可以ping通域名 最佳解决方案 我想出了如何让apt-get再次 ...