洛谷 P4910 帕秋莉的手环
题意
多组数据,给出一个环,要求不能有连续的\(1\),求出满足条件的方案数
\(1\le T \le 10, 1\le n \le 10^{18}\)
思路
20pts
暴力枚举(不会写
60pts
假设金珠子为\(0\),木珠子为\(1\),则不能有连续的木珠子
线性递推\(DP\),设\(f[i][0/1]\)表示当前填到第\(i\)位,第\(i\)位为金珠子/木珠子的方案数,那么有:
\]
\]
但是要分成两种情况讨论
第一个位置是\(0\),则\(f[1][0]=1,f[1][1]=0\),那么最后一个位置可以是\(0\)也可以是\(1\)
所以此时对答案的贡献为\(f[n][0]+f[n][1]\)
第一个位置是\(1\),则\(f[1][1]=1,f[1][0]=0\),那么最后一个位置只能是\(0\)
所以此时对答案的贡献为\(f[n][0]\)
时间复杂度\(O(Tn)\),期望得分\(60\)分
不知道为什么,也许是我写假了,只有48分
100pts
考虑用矩阵优化,目前的状态为\([f_{i,0},f_{i,1}]\),目标状态为\([f_{i+1,0},f_{i+1,1}]\),比较容易推出转移矩阵为
\]
按照\(60\)分做法写矩阵快速幂就好了
代码
60pts
/*
Author:loceaner
假设不能有连续的1
用f[i][0/1]表示选到了i处,第i处为白/黑的方案数
f[i][1] = f[i - 1][0]
f[i][0] = f[i - 1][1] + f[i - 1][0]
*/
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int A = 1e6 + 10000;
const int B = 1e6 + 11;
const int mod = 1000000007;
const int inf = 0x3f3f3f3f;
inline int read() {
char c = getchar(); int x = 0, f = 1;
for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
int n, f[A][2];
int main() {
int T = read();
while(T--) {
n = read();
long long ans = 0;
f[1][0] = 1, f[1][1] = 0;
for (int i = 2; i <= n; i++) {
f[i][1] = f[i - 1][0] % mod;
f[i][0] = (f[i - 1][1] + f[i - 1][0]) % mod;
}
ans = (f[n][0] + f[n][1]) % mod;
f[1][0] = 0, f[1][1] = 1;
for (int i = 2; i <= n; i++) {
f[i][1] = f[i - 1][0] % mod;
f[i][0] = (f[i - 1][1] + f[i - 1][0]) % mod;
}
(ans += f[n][0]) %= mod;
cout << ans << '\n';
}
return 0;
}
100pts
/*
Author:loceaner
*/
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define int long long
using namespace std;
const int A = 1e6 + 10000;
const int B = 1e6 + 11;
const int mod = 1000000007;
const int inf = 0x3f3f3f3f;
inline int read() {
char c = getchar(); int x = 0, f = 1;
for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
int n;
struct mat { int a[2][2]; } a, b, c;
mat operator * (const mat &a, const mat &b) {
mat c;
memset(c.a, 0, sizeof(c.a));
for (int k = 0; k <= 1; k++)
for (int i = 0; i <= 1; i++)
for (int j = 0; j <= 1; j++)
c.a[i][j] = (c.a[i][j] + a.a[i][k] % mod * b.a[k][j] % mod) % mod;
return c;
}
mat ksm(mat a, int b) {
mat ans;
memset(ans.a, 0, sizeof(ans.a));
for (int i = 0; i <= 1; i++) ans.a[i][i] = 1;
while (b) {
if (b & 1) ans = ans * a;
a = a * a, b >>= 1;
}
return ans;
}
signed main() {
int T = read();
while(T--) {
n = read();
int ans = 0;
memset(a.a, 0, sizeof(a.a));
a.a[0][0] = a.a[0][1] = a.a[1][0] = 1;
a = ksm(a, n - 1);
memset(b.a, 0, sizeof(b.a));
b.a[0][0] = 1, b = b * a;
ans = (ans + b.a[0][0] % mod + b.a[0][1]) % mod;
memset(c.a, 0, sizeof(c.a));
c.a[0][1] = 1, c = c * a;
ans = (ans + c.a[0][0]) % mod;
cout << ans << '\n';
}
}
洛谷 P4910 帕秋莉的手环的更多相关文章
- 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...
- [洛谷P4910]帕秋莉的手环
题目大意:有一个$n(n\leqslant10^{18})$个点的环,每个点可以是$0$或$1$,要求相邻点中至少一个$1$,问方案数,多组询问. 题解:先考虑是一条链的情况,令$f_{i,j}$表示 ...
- P4910 帕秋莉的手环
题目背景 帕秋莉是蕾米莉亚很早结识的朋友,现在住在红魔馆地下的大图书馆里.不仅擅长许多魔法,还每天都会开发出新的魔法.只是身体比较弱,因为哮喘,会在咏唱符卡时遇到麻烦. 她所用的属性魔法,主要是生命和 ...
- [Luogu] P4910 帕秋莉的手环
题目背景 帕秋莉是蕾米莉亚很早结识的朋友,现在住在红魔馆地下的大图书馆里.不仅擅长许多魔法,还每天都会开发出新的魔法.只是身体比较弱,因为哮喘,会在咏唱符卡时遇到麻烦. 她所用的属性魔法,主要是生命和 ...
- 【题解】Luogu P4910 帕秋莉的手环
原题传送门 "连续的两个中至少有1个金的"珂以理解为"不能有两个木相连" 我们考虑一个一个将元素加入手环 设f\([i][0/1]\)表示长度为\(i\)手环末 ...
- 【Cogs2187】帕秋莉的超级多项式(多项式运算)
[Cogs2187]帕秋莉的超级多项式(多项式运算) 题面 Cogs 题解 多项式运算模板题 只提供代码了.. #include<iostream> #include<cstdio& ...
- cogs 998. [東方S2] 帕秋莉·诺蕾姬
二次联通门 : cogs 998. [東方S2] 帕秋莉·诺蕾姬 交上去后发现自己没上榜 就想着加点黑科技 把循环展开一下 结果WA了.. 万恶的姆Q /* cogs 998. [東方S2] 帕秋莉· ...
- P4915 帕秋莉的魔导书(动态开点线段树)
题目背景 帕秋莉有一个巨大的图书馆,里面有数以万计的书,其中大部分为魔导书. 题目描述 魔导书是一种需要钥匙才能看得懂的书,然而只有和书写者同等或更高熟练度的人才能看得见钥匙.因此,每本魔导书都有它自 ...
- COGS2187 [HZOI 2015] 帕秋莉的超级多项式
什么都别说了,咱心态已经炸了... question 题目戳这里的说... 其实就是叫你求下面这个式子的导函数: noteskey 其实是道板子题呢~ 刚好给我们弄个多项式合集的说... 各种板子粘贴 ...
随机推荐
- Linux文件搜索命令find
命令find可以根据文件的不同属性在指定的范围内搜索文件,例如: 根据文件名进行查找,在目录/etc下搜索文件名为init( -iname 可以实现不区分大小写进行查找)的文件,实现精准查找,只查找文 ...
- MMDVM中继板测试软件MMDVMCal
运行方法: 只支持windows 64位系统 32位下载:https://share.weiyun.com/52uHAO5 64位下载:https://share.weiyun.com/5IgdqvL ...
- inotify监听文件
inotify监听文件并通知 static int inotify_dbfile(const char *spFromRule, const char *spDevFile) { int inotif ...
- 从linux源码看epoll
从linux源码看epoll 前言 在linux的高性能网络编程中,绕不开的就是epoll.和select.poll等系统调用相比,epoll在需要监视大量文件描述符并且其中只有少数活跃的时候,表现出 ...
- Redis集群-主从模式
1.架构设计 集群在单台主机上模拟搭建6个节点(3主3从的集群): 2.配置 创建与端口相同的文件夹存储Redis配置文件和持久化文件. 目录如下: 每个节点配置文件如下: 节点1: bind 192 ...
- 给女朋友讲解什么是Git
前言 在周六发现了Linus去Google演讲的一个视频,当时还发了一条朋友圈: 有兴趣的同学也可以去看看,一点儿也不无聊,在线看Linus大佬怼人 https://www.bilibili.com/ ...
- 数据库连接池 Druid和C3p0
datasource.properties数据源 #数据源 datasource.peoperties jdbc.driver=com.mysql.jdbc.Driver jdbc.url=jdbc: ...
- Divisors (求解组合数因子个数)【唯一分解定理】
Divisors 题目链接(点击) Your task in this problem is to determine the number of divisors of Cnk. Just for ...
- [每日一题2020.06.15]P1226 【模板】快速幂取余运算
我是题目 快速幂就是快速求 \(a^b\)的一种算法 快速幂 思想 : 比如我要求 \(6^9\) 首先将幂转化为二进制形式 : \[6^9 = 6^{1001} \tag{1} \] 可以得到 : ...
- 从字符串到常量池,一文看懂String类设计
从一道面试题开始 看到这个标题,你肯定以为我又要讲这道面试题了 // 这行代码创建了几个对象? String s3 = new String("1"); 是的,没错,我确实要从这里 ...