ESPNet系列的核心在于空洞卷积金字塔,每层具有不同的dilation rate,在参数量不增加的情况下,能够融合多尺度特征,相对于深度可分离卷积,深度可分离空洞卷积金字塔性价比更高。另外,HFF的多尺度特征融合方法也很值得借鉴



来源:晓飞的算法工程笔记 公众号

ESPNet


论文: ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

Introduction

  ESPNet是用于语义分割的轻量级网络,核心在于ESP模块,该模块包含point-wise卷积和空洞卷积金字塔,分别用于降低计算复杂度以及重采样各有效感受域的特征。ESP模块比其它卷积分解方法(mobilenet/shufflenet)更高效,ESPNet能在GPU/笔记本/终端设备上达到112FPS/21FPS/9FPS。

ESP module

  ESP模块将标准卷积分解成point-wise卷积和空洞卷积金字塔(spatial pyramid of dilated convolutions),point-wise卷积将输入映射到低维特征空间,空洞卷积金字塔使用$K$组$n\times n$空洞卷积同时重采样低维特征,每个空洞卷积的dilation rate为$2^{k-1}$,$k={1, \cdots, K}$。这种分解方法能够大量减少ESP模块的参数量和内存,并且保持较大的有效感受域。

  • Width divider K

  对于输入输出维度为$M$和$N$,卷积核大小为$n\times n$的标准卷积,需要学习的参数量为$n2MN$,有效感受域为$n2$。超参数$K$用来调节ESP模块的计算复杂度,首先使用point-wise卷积将输入维度从$M$降为$\frac{N}{K}$(reduce),然后将低维特征分别使用上述的空洞卷积金字塔进行处理(split and transform),最后将K组空洞卷积的输出合并(merge)。ESP模块包含$\frac{MN}{K}+\frac{(nN)2}{K}$参数,有效感受域为$[(n-1)2{K-1} + 1]^2$,在参数和感受域方面都有一定的提升。

  • Hierarchical feature fusion (HFF) for de-gridding

  论文发现,尽管空洞卷积金字塔带来更大的感受域,但直接concate输出却会带来奇怪网格纹路,如图2所示。为了解决这个问题,在concate之前先将输出进行层级相加,相对于添加额外的卷积来进行后处理,HFF能够有效地解决网格纹路而不带来过多的计算量。另外,为了保证网络的梯度传递,在ESP模块添加了一条从输入到输出的shortcut连接。

Relationship with other CNN modules

  论文列举了部分轻量级网络的核心模块进行了对比,可以看到ESP模块在参数量/内存/感受域方面都有很不错的数值。

ESPNet

  图4为ESPNet的演进过程,$l$为特征图大小,相同$l$的模块具有相同大小的特征图,红色和绿色模块分别为下采样和上采样模块,一般无说明即$\alpha_2=2$、$\alpha_3=8$。

Experiments

  这里只列举了部分实验,具体的其它实验可以去看看论文。

  替换图4d中的ESP模块进行实验对比。

  与其它语义分割模型进行对比。

Conclusion

  ESPNet是语义分割的轻量级网络,在保证轻量化的同时,针对语义分割的场景进行了核心模块的设计,使用空洞卷积金字塔进行多感受域的特征提取以及参数量的减少,并且使用HFF来巧妙消除网格纹路,十分值得借鉴。

ESPNetV2


论文: ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network

Introduction

  模型轻量化共包含3种方法,分别为模型压缩,模型量化以及轻量化设计。论文设计了轻量级网络ESPNetv2,主要贡献如下:

  • 通用的轻量化网络结构,能够支持视觉数据以及序列化数据,即能支持视觉任务和自然语言处理任务。
  • 在ESPNet基础上,加入深度可分离空洞卷积进行拓展,相对于ESPNet拥有更好的精度以及更少的参数。
  • 从实验来看,ESPNetv2在多个视觉任务上有较好的准确率和较低的参数量,任务包括图像分类、语义分割、目标检测。
  • 设计了cyclic learning rate scheduler,比一般的固定学习率的scheduler要好。

Depth-wise dilated separable convolution

  假设输入为$X\in \mathbb{R}^{W\times H\times c}$,卷积核为$X\in \mathbb{K}^{n\times n\times c \times \hat{c}}$,输出为$Y\in \mathbb{R}^{W\times H\times \hat{c}}$,标准卷积、分组卷积,深度分离卷积以及深度可分离空洞卷积的参数量和有效感受域如表1所示。

EESP unit

  论文基于深度可分离空洞卷积以及分组point-wise卷积改进ESP模块,提出了EESP(Extremely Efficient Spatial Pyramid)模块。原始的ESP模块结构如图1a所示,论文首先将point-wise卷积替换为分组point-wise卷积,然后将计算量较大的空洞卷积替换为深度可分离空洞卷积,最后依然使用HFF来消除网格纹路,结构如图1b所示,能够降低$\frac{Md+n2d2K}{\frac{Md}{g}+(n^2+d)dK}$倍计算复杂度,$K$为空洞卷积金字塔层数。考虑到单独计算$K$个point-wise卷积等同于单个分组数为$K$的point-wise分组卷积,而分组卷积的在实现上更高效,于是改进为图1c的最终结构。

  为了更高效地学习多尺度特征,论文提出下采样版本的EESP模块(Strided EESP with shortcut connection to an input image),主要进行以下改进:

  • 修改深度可分离空洞卷积为stride=2的版本。
  • 为模块原本的shortcut添加平均池化操作。
  • 将element-wise相加操作替换为concate操作,这样能增加输出的特征维度。
  • 为防止随着下采样产生的信息丢失,添加一条连接输入图像的shortcut,该路径使用多个池化操作来使其空间大小与模块输出的特征图一致,然后使用两个卷积来提取特征并调整维度,最后进行element-wise相加。

Network architecture

  ESPNetv2的网络结构如表2所示,ESSP模块的每个卷积后面都接BN层以及PReLU,模块最后的分组卷积的PReLU在element-wise相加后进行,$g=K=4$,其它与ESPNet类似。

Cyclic learning rate scheduler

  在图像分类的训练中,论文设计了循环学习率调度器,在每个周期$t$,学习率的计算为:

  $\eta_{max}$和$\eta_{min}$分别为最大和最小学习率,$T$为循环周期。

  循环学习率调度器的可视化如图4所示。

Experiments

  图像分类性能对比。

  语义分割性能对比。

  目标检测性能对比。

  文本生成性能对比。

Conclusion

  ESPNetv2在ESPNet的基础上结合深度分离卷积的设计方法,进行了进一步的模型轻量化,结合了更丰富的特征融合,模型能够拓展到多种任务中,具有很不错的性能。

CONCLUSION


  ESPNet系列的核心在于空洞卷积金字塔,每层具有不同的dilation rate,在参数量不增加的情况下,能够融合多尺度特征,相对于深度可分离卷积,深度可分离空洞卷积金字塔性价比更高。另外,HFF的多尺度特征融合方法也很值得借鉴。





如果本文对你有帮助,麻烦点个赞或在看呗~

更多内容请关注 微信公众号【晓飞的算法工程笔记】

ESPNet/ESPNetV2:空洞卷积金字塔 | 轻量级网络的更多相关文章

  1. MobileNetV1/V2/V3简述 | 轻量级网络

    MobileNet系列很重要的轻量级网络家族,出自谷歌,MobileNetV1使用深度可分离卷积来构建轻量级网络,MobileNetV2提出创新的inverted residual with line ...

  2. CNN中各类卷积总结:残差、shuffle、空洞卷积、变形卷积核、可分离卷积等

    CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量.我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中 ...

  3. 轻量级网络 - PVANet & SuffleNet

    一. PVANet 论文:PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection    [点击下载] C ...

  4. 图像分类丨浅析轻量级网络「SqueezeNet、MobileNet、ShuffleNet」

    前言 深度卷积网络除了准确度,计算复杂度也是考虑的重要指标.本文列出了近年主流的轻量级网络,简单地阐述了它们的思想.由于本人水平有限,对这部分的理解还不够深入,还需要继续学习和完善. 最后我参考部分列 ...

  5. SqueezeNet/SqueezeNext简述 | 轻量级网络

    SqueezeNet系列是比较早期且经典的轻量级网络,SqueezeNet使用Fire模块进行参数压缩,而SqueezeNext则在此基础上加入分离卷积进行改进.虽然SqueezeNet系列不如Mob ...

  6. ShuffleNetV1/V2简述 | 轻量级网络

    ShuffleNet系列是轻量级网络中很重要的一个系列,ShuffleNetV1提出了channel shuffle操作,使得网络可以尽情地使用分组卷积来加速,而ShuffleNetV2则推倒V1的大 ...

  7. 深度学习原理与框架- tf.nn.atrous_conv2d(空洞卷积) 问题:空洞卷积增加了卷积核的维度,为什么不直接使用7*7呢

    空洞卷积, 从图中可以看出,对于一个3*3的卷积,可以通过使用增加卷积的空洞的个数,来获得较大的感受眼, 从第一幅图中可以看出3*3的卷积,可以通过补零的方式,变成7*7的感受眼,这里补零的个数为1, ...

  8. Dilated Convolutions 空洞卷积

    Dilated Convolutions,中文一般称为空洞卷积或者扩张卷积,是一种改进的图像卷积方法. 扩张卷积工作示意图如下: 图a是普通的卷积,感受野是3*3,相当于扩充dilation=0 图b ...

  9. 空洞卷积(dilated Convolution) 与感受野(Receptive Field)

    一.空洞卷积 空洞卷积是是为了解决基于FCN思想的语义分割中,输出图像的size要求和输入图像的size一致而需要upsample,但由于FCN中使用pooling操作来增大感受野同时降低分辨率,导致 ...

随机推荐

  1. 解决uiautomator截取不到手机App界面信息

    今天在使用uiautomatorviewer进行安卓app控件定位的时候,出现以下异常,(用的是真机测试Android版本是10,据说是Android 8以后sdk自带的uiautomator直接打开 ...

  2. 使用metadata-extractor获取照片中的位置、曝光度、大小...

    使用metadata-extractor实现获取图片中的属性信息 官网:https://drewnoakes.com/code/exif/ 简介:metadata-extractor允许您通过简单的A ...

  3. 01 . Go之从零实现Web框架(类似Gin)

    设计一个框架 大部分时候,我们需要实现一个 Web 应用,第一反应是应该使用哪个框架.不同的框架设计理念和提供的功能有很大的差别.比如 Python 语言的 django和flask,前者大而全,后者 ...

  4. Redis基础篇(六)数据同步:主从复制

    Redis具有高可靠性,体现在两方面: 一是数据尽量少丢失,通过前面介绍的持久化方式AOF和RDB,在宕机时可以恢复数据. 二是服务尽量少中断,通过副本冗余来实现. 今天我们学习的就是通过主从复制实现 ...

  5. JAVA注解基础知识

    定义-摘自JAVA编程思想 注解(元数据)为我们在代码中添加信息提供了一种形式化的方法,使我们在稍后某个时刻能非常方便的使用这些数据. 背景: 注解是JAVA5的一种新特性,是为应对C#等之类对JAV ...

  6. Java通过jni调用动态链接库

    (1)JNI简介 JNI是Java Native Interface的缩写,它提供了若干的API实现了Java和其他语言的通信(主要是C&C++).从Java1.1开始,JNI标准成为java ...

  7. 在onelogin中使用OpenId Connect Authentication Flow

    目录 简介 OpenId Connect和Authentication Flow简介 onelogin的配置工作 使用应用程序连接onelogin 程序中的关键步骤 总结 简介 onelogin是一个 ...

  8. DRF之访问权限控制和访问频率控制(节流)

    权限控制 前言 用户验证用户权限,根据不同访问权限控制对不同内容的访问. 建议了解视图.token验证的内容. 使用流程 自定义访问权限类,继承BasePermission,重写has_permiss ...

  9. ElasticSearch--一、使用场景以及对应软件配置安装

    废话不多说,直接来硬的!我在使用的时候使用的是mysql数据库. 一.ElasticSearch概念和使用场景 1.当我们需要搜索海量数据的时候,就可能会用到.以下使用的场景有哪些呢? 搜索海量数据 ...

  10. Kafka知识总结及面试题

    目录 概念 Kafka基础概念 命令行 Kafka 数据存储设计 kafka在zookeeper中存储结构 生产者 生产者设计 消费者 消费者设计 面试题 kafka设计 请说明什么是Apache K ...