我们知道 HashMap 的底层是由数组,链表,红黑树组成的,在 HashMap 做扩容操作时,除了把数组容量扩大为原来的两倍外,还会对所有元素重新计算 hash 值,因为长度扩大以后,hash值也随之改变。

如果是简单的 Node 对象,只需要重新计算下标放进去就可以了,如果是链表和红黑树,那么操作就会比较复杂,下面我们就来看下,JDK1.8 下的 HashMap 在扩容时对链表和红黑树做了哪些优化?

rehash 时,链表怎么处理?

假设一个 HashMap 原本 bucket 大小为 16。下标 3 这个位置上的 19, 3, 35 由于索引冲突组成链表。

 
image

当 HashMap 由 16 扩容到 32 时,19, 3, 35 重新 hash 之后拆成两条链表。

 
image

查看 JDK1.8 HashMap 的源码,我们可以看到关于链表的优化操作如下:

// 把原有链表拆成两个链表
// 链表1存放在低位(原索引位置)
Node<K,V> loHead = null, loTail = null;
// 链表2存放在高位(原索引 + 旧数组长度)
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 链表1
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 链表2
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 链表1存放于原索引位置
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 链表2存放原索引加上旧数组长度的偏移量
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}

正常我们是把所有元素都重新计算一下下标值,再决定放入哪个桶,JDK1.8 优化成直接把链表拆成高位和低位两条,通过位运算来决定放在原索引处或者原索引加原数组长度的偏移量处。我们通过位运算来分析下。

先回顾一下原 hash 的求余过程:

 
image

再看一下 rehash 时,判断时做的位操作,也就是这句 e.hash & oldCap

 
image

再看下扩容后的实际求余过程:

 
image

这波操作是不是很666,为什么 2 的整数幂 - 1可以作 & 操作可以代替求余计算,因为 2 的整数幂 - 1 的二进制比较特殊,就是一串 11111,与这串数字 1 作 & 操作,结果就是保留下原数字的低位,去掉原数字的高位,达到求余的效果。2 的整数幂的二进制也比较特殊,就是一个 1 后面跟上一串 0。

HashMap 的扩容都是扩大为原来大小的两倍,从二进制上看就是给这串数字加个 0,比如 16 -> 32 = 10000 -> 100000,那么他的 n - 1 就是 15 -> 32 = 1111 -> 11111。也就是多了一位,所以扩容后的下标可以从原有的下标推算出来。差异就在于上图我标红的地方,如果标红处是 0,那么扩容后再求余结果不变,如果标红处是 1,那么扩容后再求余就为原索引 + 原偏移量。如何判断标红处是 0 还是 1,就是把 e.hash & oldCap

rehash 时,红黑树怎么处理?

// 红黑树转链表阈值
static final int UNTREEIFY_THRESHOLD = 6; // 扩容操作
final Node<K,V>[] resize() {
// ....
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
// ...
} final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
TreeNode<K,V> b = this;
// Relink into lo and hi lists, preserving order
// 和链表同样的套路,分成高位和低位
TreeNode<K,V> loHead = null, loTail = null;
TreeNode<K,V> hiHead = null, hiTail = null;
int lc = 0, hc = 0;
/**
* TreeNode 是间接继承于 Node,保留了 next,可以像链表一样遍历
* 这里的操作和链表的一毛一样
*/
for (TreeNode<K,V> e = b, next; e != null; e = next) {
next = (TreeNode<K,V>)e.next;
e.next = null;
// bit 就是 oldCap
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
// 尾插
loTail.next = e;
loTail = e;
++lc;
}
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
} // 树化低位链表
if (loHead != null) {
// 如果 loHead 不为空,且链表长度小于等于 6,则将红黑树转成链表
if (lc <= UNTREEIFY_THRESHOLD)
tab[index] = loHead.untreeify(map);
else {
/**
* hiHead == null 时,表明扩容后,
* 所有节点仍在原位置,树结构不变,无需重新树化
*/
tab[index] = loHead;
if (hiHead != null) // (else is already treeified)
loHead.treeify(tab);
}
}
// 树化高位链表,逻辑与上面一致
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}

从源码可以看出,红黑树的拆分和链表的逻辑基本一致,不同的地方在于,重新映射后,会将红黑树拆分成两条链表,根据链表的长度,判断需不需要把链表重新进行树化。

摘自
https://www.jianshu.com/p/87d2ef48e645

Java源码系列4——HashMap扩容时究竟对链表和红黑树做了什么?的更多相关文章

  1. Java源码系列2——HashMap

    HashMap 的源码很多也很复杂,本文只是摘取简单常用的部分代码进行分析.能力有限,欢迎指正. HASH 值的计算 前置知识--位运算 按位异或操作符^:1^1=0, 0^0=0, 1^0=0, 值 ...

  2. Java源码系列1——ArrayList

    本文简单介绍了 ArrayList,并对扩容,添加,删除操作的源代码做分析.能力有限,欢迎指正. ArrayList是什么? ArrayList 就是数组列表,主要用来装载数据.底层实现是数组 Obj ...

  3. 【java集合框架源码剖析系列】java源码剖析之HashMap

    前言:之所以打算写java集合框架源码剖析系列博客是因为自己反思了一下阿里内推一面的失败(估计没过,因为写此博客已距阿里巴巴一面一个星期),当时面试完之后感觉自己回答的挺好的,而且据面试官最后说的这几 ...

  4. Java源码解读(一)——HashMap

    HashMap作为常用的一种数据结构,阅读源码去了解其底层的实现是十分有必要的.在这里也分享自己阅读源码遇到的困难以及自己的思考. HashMap的源码介绍已经有许许多多的博客,这里只记录了一些我看源 ...

  5. Java 源码刨析 - HashMap 底层实现原理是什么?JDK8 做了哪些优化?

    [基本结构] 在 JDK 1.7 中 HashMap 是以数组加链表的形式组成的: JDK 1.8 之后新增了红黑树的组成结构,当链表大于 8 并且容量大于 64 时,链表结构会转换成红黑树结构,它的 ...

  6. 大白话Vue源码系列(05):运行时鸟瞰图

    阅读目录 Vue 实例的生命周期 实例创建 响应的数据绑定 挂载到 DOM 节点 结论 研究 runtime 一边 Vue 一边源码 初看 Vue 是 Vue 源码是源码 再看 Vue 不是 Vue ...

  7. [java源码解析]对HashMap源码的分析(二)

    上文我们讲了HashMap那骚骚的逻辑结构,这一篇我们来吹吹它的实现思想,也就是算法层面.有兴趣看下或者回顾上一篇HashMap逻辑层面的,可以看下HashMap源码解析(一).使用了哈希表得“拉链法 ...

  8. [java源码解析]对HashMap源码的分析(一)

    最近有空的时候研究了下HashMap的源码,平时我用HashMap主要拿来当业务数据整理后的容器,一直觉得它比较灵活和好用, 这样 的便利性跟它的组成结构有很大的关系. 直接开门见山,先简要说明一下H ...

  9. 【java集合框架源码剖析系列】java源码剖析之HashSet

    注:博主java集合框架源码剖析系列的源码全部基于JDK1.8.0版本.本博客将从源码角度带领大家学习关于HashSet的知识. 一HashSet的定义: public class HashSet&l ...

随机推荐

  1. python数据更新

    def cal(s,m): if s==u"废弃" or s==u"拆除": return 4 elif s==u"竣工": return ...

  2. 图形验证码---pillow

    图片验证码逻辑 客户端发起GET连接请求,并随机生成UUID,绑定图片 UUID:通用唯一识别码(Universally Unique Identifier),目的,是让分布式系统中的所有元素,都能有 ...

  3. PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target

    注:网上搜来的快照,暂未验证 在java代码中请求https链接的时候,可能会报下面这个错误javax.net.ssl.SSLHandshakeException: sun.security.vali ...

  4. OpenCV-Python setMouseCallback回调函数中图像变量img的传递方法解析

    ☞ ░ 前往老猿Python博文目录 ░ 一.使用全局变量进行变量传递 OpenCV-Python中可以使用setMouseCallback来设置鼠标事件的回调函数,我们来看个样例. 1.1.案例1代 ...

  5. 第12.7节 Python标准库内置模块小结

    本章老猿走马观花般的介绍了一下前面没有介绍的内置模块,内容很多,介绍的很泛,介绍的目的只是让大家知道有哪些内置模块.大致的功能有哪些,以后要使用时大家可以再去详细研究.之所以采用这种方式,一是老猿时间 ...

  6. 阿里云服务器搭建Docker版AWVS

    本文严重参考该文章:https://www.sqlsec.com/2020/04/awvs.html 阿里云服务器搭建Docker版AWVS,因为之前有使用Docker的经验,所以本文只是简述一下安装 ...

  7. Python 常用方法和模块的使用(time & datetime & os &random &sys &shutil)-(六)

    1 比较常用的一些方法 1.eval()方法:执行字符串表达式,并返回到字符串. 2.序列化:变量从内存中变成可存储或传输到文件或变量的过程,可以保存当时对象的状态,实现其生命周期的延长,并且需要时可 ...

  8. PR全套插件一键安装

    PR全套插件一键安装,无需注册码软件也是我在别的地方搬来的,自己用着很好,决定分享出来! 我的PR版本是2019,用着没有任何问题.我没有安装其他版本PR,所以无法测试,不过应该是可以用的. 使用截图 ...

  9. 【HNOI2010】城市建设(对时间分治 & Kruskal)

    Description \(n\) 个点 \(m\) 条边的带边权无向图.\(q\) 次操作,每次修改一条边的权值. 求每次修改后的最小生成树的边权和. Hint \(1\le n\le 2\time ...

  10. linux tar 压缩和解压缩

    tar -c: 建立压缩档案-x:解压-t:查看内容-r:向压缩归档文件末尾追加文件-u:更新原压缩包中的文件 这五个是独立的命令,压缩解压都要用到其中一个,可以和别的命令连用但只能用其中一个. 下面 ...