题目链接

题目大意

给你一个长为d只包含字符'a','b','c','?' 的字符串,?可以变成a,b,c字符,假如有x个?字符,那么有\(3^x\)个字符串,求所有字符串种子序列包含多少个abc子序列

题目思路

假如没有问号,那么就是一个简单的dp

\(dp[i][1]为前i个位置有多少个a\)

\(dp[i][2]为前i个位置有多少个ab\)

\(dp[i][3]为前i个位置有多少个abc\)

考虑 ’?‘ 会对 dp 的转移产生什么影响,因为 ‘?’ 可以将三种字母全部都表示一遍,所以到了第 i 个位置时,如果前面有 x 个 ' ? ' 的话,那么到达此位置的字符串就会有 \(3^x\) 种,如果不考虑 ' ? ' 的话,碰到一个 ' a ' \(dp[i][1]\) 就需要加一,但现在如果考虑到 ? 的影响,$dp[i][0] $就需要加上 \(3^x\) 才行

再考虑用 ' ? ' 去分别表示三种字母:

  1. ' ? ' 表示 ' a ' :前面仍然有 \(dp[i-1][1]\)个 ' a ',仍然有 \(dp[ i - 1 ][ 2 ]\) 个 ' ab ',仍然有 \(dp[i-1][3]\) 个 ' abc ',多了 3^x 个 a

  2. ' ? ' 表示 ' b ' :前面仍然有 \(dp[i-1][1]\)个 ' a ',仍然有 \(dp[ i - 1 ][ 2 ]\) 个 ' ab ',仍然有 \(dp[i-1][3]\) 个 ' abc ',多了 \(dp[i-1][1]\)个

    ’ ab ‘

  3. ' ? ' 表示 ' c ' :前面仍然有 \(dp[i-1][1]\)个 ' a ',仍然有 \(dp[ i - 1 ][ 2 ]\) 个 ' ab ',仍然有 \(dp[i-1][3]\) 个 ' abc ', 多了\(dp[i-1][2]\)个

    ' abc '

显然可以省略第一维

参考链接

代码

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<unordered_map>
#define fi first
#define se second
#define debug printf(" I am here\n");
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=2e5+5,inf=0x3f3f3f3f,mod=1e9+7;
const double eps=1e-10;
char s[maxn];
ll dp[5];
int d;
signed main(){
dp[0]=1;
scanf("%d %s",&d,s+1);
for(int i=1;i<=d;i++){
if(s[i]=='a'){
dp[1]=(dp[1]+dp[0])%mod;
}else if(s[i]=='b'){
dp[2]=(dp[2]+dp[1])%mod;
}else if(s[i]=='c'){
dp[3]=(dp[3]+dp[2])%mod;
}else{
for(int j=3;j>=1;j--){
dp[j]=(dp[j]*3+dp[j-1])%mod;
}
dp[0]=dp[0]*3%mod;
}
}
printf("%lld\n",dp[3]);
return 0;
}

Codeforces Round #674 (Div. 3) F. Number of Subsequences 题解(dp)的更多相关文章

  1. Codeforces Round #479 (Div. 3) F. Consecutive Subsequence (简单dp)

    题目:https://codeforces.com/problemset/problem/977/F 题意:一个序列,求最长单调递增子序列,但是有一个要求是中间差值都是1 思路:dp,O(n)复杂度, ...

  2. Codeforces Round #587 (Div. 3) F Wi-Fi(线段树+dp)

    题意:给定一个字符串s 现在让你用最小的花费 覆盖所有区间 思路:dp[i]表示前i个全覆盖以后的花费 如果是0 我们只能直接加上当前位置的权值 否则 我们可以区间询问一下最小值 然后更新 #incl ...

  3. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  4. Codeforces Round #486 (Div. 3) F. Rain and Umbrellas

    Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...

  5. Codeforces Round #501 (Div. 3) F. Bracket Substring

    题目链接 Codeforces Round #501 (Div. 3) F. Bracket Substring 题解 官方题解 http://codeforces.com/blog/entry/60 ...

  6. Codeforces Round #499 (Div. 1) F. Tree

    Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...

  7. Codeforces Round #524 (Div. 2)(前三题题解)

    这场比赛手速场+数学场,像我这样读题都读不大懂的蒟蒻表示呵呵呵. 第四题搞了半天,大概想出来了,但来不及(中途家里网炸了)查错,于是我交了两次丢了100分.幸亏这次没有掉rating. 比赛传送门:h ...

  8. Codeforces Round #267 (Div. 2) C. George and Job(DP)补题

    Codeforces Round #267 (Div. 2) C. George and Job题目链接请点击~ The new ITone 6 has been released recently ...

  9. Codeforces Round #325 (Div. 2) F. Lizard Era: Beginning meet in the mid

    F. Lizard Era: Beginning Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

随机推荐

  1. K近邻算法:机器学习萌新必学算法

    摘要:K近邻(k-NearestNeighbor,K-NN)算法是一个有监督的机器学习算法,也被称为K-NN算法,由Cover和Hart于1968年提出,可以用于解决分类问题和回归问题. 1. 为什么 ...

  2. DLL转存为IL文件及修改后重新生成DLL文件

    DLL反编译工具有:dotPeek (jetbrains) .ILSpy DLL转存IL使用:ildasm 打开DLL文件,选择file->dump. il .res重新生成DLL工具: ila ...

  3. Learn day2 运算/循环/字符串操作

    1.容器类型的强制转换 类型:str list tuple set dict var1 = "今天天气好晴朗朗"var2 = ["刘璐","王钊&qu ...

  4. 公钥、私钥、SSL/TLS、会话密钥、DES【转载】

    原文链接:https://www.cnblogs.com/thbCode/p/5829719.html 一,公钥私钥1,公钥和私钥成对出现2,公开的密钥叫公钥,只有自己知道的叫私钥3,用公钥加密的数据 ...

  5. P2966 [USACO09DEC]Cow Toll Paths G

    题意描述 Cow Toll Paths G 这道题翻译的是真的不错,特别是第一句话 给定一张有 \(n\) 个点 \(m\) 条边的无向图,每条边有边权,每个点有点权. 两点之间的路径长度为所有边权 ...

  6. Photoshop如何安装蓝湖插件

    Photoshop如何安装蓝湖插件 下载蓝湖插件 直通车:蓝湖Photoshop插件: Photoshop版本要求为cc2017以上, 下载后是一个zip格式的文件,我们需要解压. 下载的文件 解压后 ...

  7. python开发--python函数-(持续更新)

    1. 打印 : print() # 打印,输出 2. 变量 : var = 'hello' # 变量var , 把'hello' 赋值给变量 var 3. if 函数 : # 代码块 4个空格或者一个 ...

  8. 求0到n之间素数个数的序列

    要求: (1) 找出0-1000之间素数(2) 设f(n)表示0-n之间的素数个数,计算出当n=0,1,2,3,.....,997时f(n)的值,并写入文件 分析: 首先找素数使用一个效率较高的方法- ...

  9. python爬虫09selenium

    selenium 变成了爬虫利器 我们先来安装一下 pip install selenium 接着我们还要下载浏览器驱动 小帅b用的是 Chrome 浏览器 所以下载的是 Chrome 驱动 当然你用 ...

  10. 学习笔记——make项目中克隆GitHub目录失败的解决

    在示例项目中执行make后出现下面的错误 WARNING: Missing submodule components/json/cJSON... WARNING: Missing submodule ...