InceptionV4
在下面的结构图中,每一个inception模块中都有一个1∗1的没有激活层的卷积层,用来扩展通道数,从而补偿因为inception模块导致的维度约间。其中Inception-ResNet-V1的结果与Inception v3相当;Inception-ResNet-V1与Inception v4结果差不多,不过实际过程中Inception v4会明显慢于Inception-ResNet-v2,这也许是因为层数太多了。且在Inception-ResNet结构中,只在传统层的上面使用BN层,而不在合并层上使用BN,虽然处处使用BN是有好处,不过更希望能够将一个完整的组件放入单独的GPU中。因为具有大量激活单元的层会占用过多的显存,所以希望这些地方丢弃BN,从而总体增加Inception模块的数量。使得不需要去解决计算资源和模块什么的权衡问题。
1. inception v4
**图1.1 inception v4 网络结构图**
**图1.2 图1.1的stem和Inception-A部分结构图**
**图1.3 图1.1的Reduction-A和Inception-B部分结构图**
**图1.4 图1.1的Reduction-B和Inception-C部分结构图**
2. Inception-resnet-v1 & Inception-resnet-v2
**图2.1 Inception-resnet-v1 & Inception-resnet-v2的结构图**
2.1 Inception-resnet-v1的组成模块
**图2.1.1 图2.1的stem和Inception-ResNet-A部分结构图**
**图2.1.2 图2.1的Reduction-A和Inception-ResNet-B部分结构图**
**图2.1.3 图2.1的Reduction-B和Inception-ResNet-C部分结构图**
2.2 Inception-resnet-v2的组成模块
**图2.2.1 图2.1的stem和Inception-ResNet-A部分结构图**
**图2.2.2 图2.1的Reduction-A和Inception-ResNet-B部分结构图**
**图2.2.3 图2.1的Reduction-B和Inception-ResNet-C部分结构图**
3. 模型训练
在上述的Inception V4,Inception-Resnet-V1,Inception-ResNet-v2这三个模型中都用到了Reduction-A,他们各自的具体参数如下:
图3.1 不同模型下Reduction-A的模型超参数
作者们在训练的过程中发现,如果通道数超过1000,那么Inception-resnet等网络都会开始变得不稳定,并且过早的就“死掉了”,即在迭代几万次之后,平均池化的前面一层就会生成很多的0值。作者们通过调低学习率,增加BN都没有任何改善。
不过他们发现如果在将残差汇入之前,对残差进行缩小,可以让模型稳定训练,值通常选择[0,1.0.3],如图3.2
**图3.2 对inception-resnet模块进行最后输出值的等比例缩小**
同样的在ResNet-v1中,何凯明等人也在cifar-10中发现了模型的不稳定现象:即在特别深的网络基础上去训cifar-10,需要先以0.01的学习率去训练,然后在以0.1的学习率训练。
不过这里的作者们认为如果通道数特别多的话,即使以特别低的学习率(0.00001)训练也无法让模型收敛,如果之后再用大学习率,那么就会轻松的破坏掉之前的成果。然而简单的缩小残差的输出值有助于学习的稳定,即使进行了简单的缩小,那么对最终结果也造成不了多大的损失,反而有助于稳定训练。
- 在inception-resnet-v1与inception v3的对比中,inception-resnet-v1虽然训练速度更快,不过最后结果有那么一丢丢的差于inception v3;
- 而在inception-resnet-v2与inception v4的对比中,inception-resnet-v2的训练速度更块,而且结果比inception v4也更好一点。所以最后胜出的就是inception-resnet-v2。
**图3.3 不同模型的结果对比**
4. 代码
4.1 Inception-V4
from keras.layers import Input
from keras.layers.merge import concatenate
from keras.layers import Dense, Dropout, Flatten, Activation, Conv2D
from keras.layers.convolutional import MaxPooling2D, AveragePooling2D
from keras.layers.normalization import BatchNormalization
from keras import backend as K
from keras.models import Model
from keras.utils import plot_model
CONV_BLOCK_COUNT = 0 # 用来命名计数卷积编号
INCEPTION_A_COUNT = 0
INCEPTION_B_COUNT = 0
INCEPTION_C_COUNT = 0
def conv_block(x, nb_filters, nb_row, nb_col, strides=(1, 1), padding='same', use_bias=False):
global CONV_BLOCK_COUNT
CONV_BLOCK_COUNT += 1
with K.name_scope('conv_block_'+str(CONV_BLOCK_COUNT)):
x = Conv2D(filters=nb_filters,
kernel_size=(nb_row, nb_col),
strides=strides,
padding=padding,
use_bias=use_bias)(x)
x = BatchNormalization(axis=-1, momentum=0.9997, scale=False)(x)
x = Activation("relu")(x)
return x
def stem(x_input):
with K.name_scope('stem'):
x = conv_block(x_input, 32, 3, 3, strides=(2, 2), padding='valid')
x = conv_block(x, 32, 3, 3, padding='valid')
x = conv_block(x, 64, 3, 3)
x1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')(x)
x2 = conv_block(x, 96, 3, 3, strides=(2, 2), padding='valid')
x = concatenate([x1, x2], axis=-1)
x1 = conv_block(x, 64, 1, 1)
x1 = conv_block(x1, 96, 3, 3, padding='valid')
x2 = conv_block(x, 64, 1, 1)
x2 = conv_block(x2, 64, 7, 1)
x2 = conv_block(x2, 64, 1, 7)
x2 = conv_block(x2, 96, 3, 3, padding='valid')
x = concatenate([x1, x2], axis=-1)
x1 = conv_block(x, 192, 3, 3, strides=(2, 2), padding='valid')
x2 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')(x)
merged_vector = concatenate([x1, x2], axis=-1)
return merged_vector
def inception_A(x_input):
"""35*35 卷积块"""
global INCEPTION_A_COUNT
INCEPTION_A_COUNT += 1
with K.name_scope('inception_A' + str(INCEPTION_A_COUNT)):
averagepooling_conv1x1 = AveragePooling2D(pool_size=(3, 3), strides=(1, 1), padding='same')(x_input) # 35 * 35 * 192
averagepooling_conv1x1 = conv_block(averagepooling_conv1x1, 96, 1, 1) # 35 * 35 * 96
conv1x1 = conv_block(x_input, 96, 1, 1) # 35 * 35 * 96
conv1x1_3x3 = conv_block(x_input, 64, 1, 1) # 35 * 35 * 64
conv1x1_3x3 = conv_block(conv1x1_3x3, 96, 3, 3) # 35 * 35 * 96
conv3x3_3x3 = conv_block(x_input, 64, 1, 1) # 35 * 35 * 64
conv3x3_3x3 = conv_block(conv3x3_3x3, 96, 3, 3) # 35 * 35 * 96
conv3x3_3x3 = conv_block(conv3x3_3x3, 96, 3, 3) # 35 * 35 * 96
merged_vector = concatenate([averagepooling_conv1x1, conv1x1, conv1x1_3x3, conv3x3_3x3], axis=-1) # 35 * 35 * 384
return merged_vector
def inception_B(x_input):
"""17*17 卷积块"""
global INCEPTION_B_COUNT
INCEPTION_B_COUNT += 1
with K.name_scope('inception_B' + str(INCEPTION_B_COUNT)):
averagepooling_conv1x1 = AveragePooling2D(pool_size=(3, 3), strides=(1, 1), padding='same')(x_input)
averagepooling_conv1x1 = conv_block(averagepooling_conv1x1, 128, 1, 1)
conv1x1 = conv_block(x_input, 384, 1, 1)
conv1x7_1x7 = conv_block(x_input, 192, 1, 1)
conv1x7_1x7 = conv_block(conv1x7_1x7, 224, 1, 7)
conv1x7_1x7 = conv_block(conv1x7_1x7, 256, 1, 7)
conv2_1x7_7x1 = conv_block(x_input, 192, 1, 1)
conv2_1x7_7x1 = conv_block(conv2_1x7_7x1, 192, 1, 7)
conv2_1x7_7x1 = conv_block(conv2_1x7_7x1, 224, 7, 1)
conv2_1x7_7x1 = conv_block(conv2_1x7_7x1, 224, 1, 7)
conv2_1x7_7x1 = conv_block(conv2_1x7_7x1, 256, 7, 1)
merged_vector = concatenate([averagepooling_conv1x1, conv1x1, conv1x7_1x7, conv2_1x7_7x1], axis=-1)
return merged_vector
def inception_C(x_input):
"""8*8 卷积块"""
global INCEPTION_C_COUNT
INCEPTION_C_COUNT += 1
with K.name_scope('Inception_C' + str(INCEPTION_C_COUNT)):
averagepooling_conv1x1 = AveragePooling2D(pool_size=(3, 3), strides=(1, 1), padding='same')(x_input)
averagepooling_conv1x1 = conv_block(averagepooling_conv1x1, 256, 1, 1)
conv1x1 = conv_block(x_input, 256, 1, 1)
# 用 1x3 和 3x1 替代 3x3
conv3x3_1x1 = conv_block(x_input, 384, 1, 1)
conv3x3_1 = conv_block(conv3x3_1x1, 256, 1, 3)
conv3x3_2 = conv_block(conv3x3_1x1, 256, 3, 1)
conv2_3x3_1x1 = conv_block(x_input, 384, 1, 1)
conv2_3x3_1x1 = conv_block(conv2_3x3_1x1, 448, 1, 3)
conv2_3x3_1x1 = conv_block(conv2_3x3_1x1, 512, 3, 1)
conv2_3x3_1x1_1 = conv_block(conv2_3x3_1x1, 256, 3, 1)
conv2_3x3_1x1_2 = conv_block(conv2_3x3_1x1, 256, 1, 3)
merged_vector = concatenate([averagepooling_conv1x1, conv1x1, conv3x3_1, conv3x3_2, conv2_3x3_1x1_1, conv2_3x3_1x1_2], axis=-1)
return merged_vector
def reduction_A(x_input, k=192, l=224, m=256, n=384):
with K.name_scope('Reduction_A'):
"""Architecture of a 35 * 35 to 17 * 17 Reduction_A block."""
maxpool = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')(x_input)
conv3x3 = conv_block(x_input, n, 3, 3, strides=(2, 2), padding='valid')
conv2_3x3 = conv_block(x_input, k, 1, 1)
conv2_3x3 = conv_block(conv2_3x3, l, 3, 3)
conv2_3x3 = conv_block(conv2_3x3, m, 3, 3, strides=(2, 2), padding='valid')
merged_vector = concatenate([maxpool, conv3x3, conv2_3x3], axis=-1)
return merged_vector
def reduction_B(x_input):
"""Architecture of a 17 * 17 to 8 * 8 Reduction_B block."""
with K.name_scope('Reduction_B'):
maxpool = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')(x_input)
conv3x3 = conv_block(x_input, 192, 1, 1)
conv3x3 = conv_block(conv3x3, 192, 3, 3, strides=(2, 2), padding='valid')
conv1x7_7x1_3x3 = conv_block(x_input, 256, 1, 1)
conv1x7_7x1_3x3 = conv_block(conv1x7_7x1_3x3, 256, 1, 7)
conv1x7_7x1_3x3 = conv_block(conv1x7_7x1_3x3, 320, 7, 1)
conv1x7_7x1_3x3 = conv_block(conv1x7_7x1_3x3, 320, 3, 3, strides=(2, 2), padding='valid')
merged_vector = concatenate([maxpool, conv3x3, conv1x7_7x1_3x3], axis=-1)
return merged_vector
def inception_v4_backbone(nb_classes=1000, load_weights=True):
x_input = Input(shape=(299, 299, 3))
# Stem
x = stem(x_input) # 35 x 35 x 384
# 4 x Inception_A
for i in range(4):
x = inception_A(x) # 35 x 35 x 384
# Reduction_A
x = reduction_A(x, k=192, l=224, m=256, n=384) # 17 x 17 x 1024
# 7 x Inception_B
for i in range(7):
x = inception_B(x) # 17 x 17 x1024
# Reduction_B
x = reduction_B(x) # 8 x 8 x 1536
# Average Pooling
x = AveragePooling2D(pool_size=(8, 8))(x) # 1536
# dropout
x = Dropout(0.2)(x)
x = Flatten()(x) # 1536
# 全连接层
x = Dense(units=nb_classes, activation='softmax')(x)
model = Model(inputs=x_input, outputs=x, name='Inception-V4')
return model
if __name__ == '__main__':
inception_v4 = inception_v4_backbone()
plot_model(inception_v4, 'inception_v4.png', show_shapes=True)
4.2 inception_resnet_v1
from keras.layers import Input
from keras.layers.merge import concatenate, add
from keras.layers import Dense, Dropout, Lambda, Flatten, Activation, Conv2D
from keras.layers.convolutional import MaxPooling2D, AveragePooling2D
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras import backend as K
from keras.utils import plot_model
RESNET_V1_A_COUNT = 0
RESNET_V1_B_COUNT = 0
RESNET_V1_C_COUNT = 0
def resnet_v1_stem(x_input):
with K.name_scope('Stem'):
x = Conv2D(filters=32, kernel_size=(3, 3), strides=(2, 2), activation='relu', padding='valid')(x_input)
x = Conv2D(32, (3, 3), activation='relu', padding='valid')(x)
x = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D(pool_size=(3, 3), strides=2, padding='valid')(x)
x = Conv2D(80, (1, 1), activation='relu', padding='same')(x)
x = Conv2D(192, (3, 3), activation='relu', padding='valid')(x)
x = Conv2D(256, (3, 3), strides=(2, 2), activation='relu', padding='valid')(x)
x = BatchNormalization(axis=-1)(x)
x = Activation('relu')(x)
return x
def inception_resnet_v1_A(x_input, scale_residual=True):
""" 35x35 卷积核"""
global RESNET_V1_A_COUNT
RESNET_V1_A_COUNT += 1
with K.name_scope('resnet_v1_A' + str(RESNET_V1_A_COUNT)):
ar1 = Conv2D(32, (1, 1), activation='relu', padding='same')(x_input)
ar2 = Conv2D(32, (1, 1), activation='relu', padding='same')(x_input)
ar2 = Conv2D(32, (3, 3), activation='relu', padding='same')(ar2)
ar3 = Conv2D(32, (1, 1), activation='relu', padding='same')(x_input)
ar3 = Conv2D(32, (3, 3), activation='relu', padding='same')(ar3)
ar3 = Conv2D(32, (3, 3), activation='relu', padding='same')(ar3)
merged_vector = concatenate([ar1, ar2, ar3], axis=-1)
ar = Conv2D(256, (1, 1), activation='linear', padding='same')(merged_vector)
if scale_residual: # 是否缩小
ar = Lambda(lambda x: 0.1*x)(ar)
x = add([x_input, ar])
x = BatchNormalization(axis=-1)(x)
x = Activation('relu')(x)
return x
def inception_resnet_v1_B(x_input, scale_residual=True):
""" 17x17 卷积核"""
global RESNET_V1_B_COUNT
RESNET_V1_B_COUNT += 1
with K.name_scope('resnet_v1_B' + str(RESNET_V1_B_COUNT)):
br1 = Conv2D(128, (1, 1), activation='relu', padding='same')(x_input)
br2 = Conv2D(128, (1, 1), activation='relu', padding='same')(x_input)
br2 = Conv2D(128, (1, 7), activation='relu', padding='same')(br2)
br2 = Conv2D(128, (7, 1), activation='relu', padding='same')(br2)
merged_vector = concatenate([br1, br2], axis=-1)
br = Conv2D(896, (1, 1), activation='linear', padding='same')(merged_vector)
if scale_residual:
br = Lambda(lambda x: 0.1*x)(br)
x = add([x_input, br])
x = BatchNormalization(axis=-1)(x)
x = Activation('relu')(x)
return x
def inception_resnet_v1_C(x_input, scale_residual=True):
global RESNET_V1_C_COUNT
RESNET_V1_C_COUNT += 1
with K.name_scope('resnet_v1_C' + str(RESNET_V1_C_COUNT)):
cr1 = Conv2D(192, (1, 1), activation='relu', padding='same')(x_input)
cr2 = Conv2D(192, (1, 1), activation='relu', padding='same')(x_input)
cr2 = Conv2D(192, (1, 3), activation='relu', padding='same')(cr2)
cr2 = Conv2D(192, (3, 1), activation='relu', padding='same')(cr2)
merged_vector = concatenate([cr1, cr2], axis=-1)
cr = Conv2D(1792, (1, 1), activation='relu', padding='same')(merged_vector)
if scale_residual:
cr = Lambda(lambda x: 0.1*x)
x = add([x_input, cr])
x = BatchNormalization(axis=-1)(x)
x = Activation('relu')(x)
return x
def reduction_resnet_A(x_input, k=192, l=224, m=256, n=384):
with K.name_scope('reduction_resnet_A'):
ra1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')(x_input)
ra2 = Conv2D(n, (3, 3), activation='relu', strides=(2, 2), padding='valid')(x_input)
ra3 = Conv2D(k, (1, 1), activation='relu', padding='same')(x_input)
ra3 = Conv2D(l, (3, 3), activation='relu', padding='same')(ra3)
ra3 = Conv2D(m, (3, 3), activation='relu', strides=(2, 2), padding='valid')(ra3)
merged_vector = concatenate([ra1, ra2, ra3], axis=-1)
x = BatchNormalization(axis=-1)(merged_vector)
x = Activation('relu')(x)
return x
def reduction_resnet_B(x_input):
with K.name_scope('reduction_resnet_B'):
rb1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2),padding='valid')(x_input)
rb2 = Conv2D(256, (1, 1), activation='relu', padding='same')(x_input)
rb2 = Conv2D(384, (3, 3), strides=(2, 2), activation='relu', padding='valid')(rb2)
rb3 = Conv2D(256, (1, 1),activation='relu', padding='same')(x_input)
rb3 = Conv2D(256, (3, 3), strides=(2, 2), activation='relu', padding='valid')(rb3)
rb4 = Conv2D(256, (1, 1), activation='relu', padding='same')(x_input)
rb4 = Conv2D(256, (3, 3), activation='relu', padding='same')(rb4)
rb4 = Conv2D(256, (3, 3), strides=(2, 2), activation='relu', padding='valid')(rb4)
merged_vector = concatenate([rb1, rb2, rb3, rb4], axis=-1)
x = BatchNormalization(axis=-1)(merged_vector)
x = Activation('relu')(x)
return x
def inception_resnet_v1_backbone(nb_classes=1000, scale=True):
x_input = Input(shape=(299, 299, 3))
# stem
x = resnet_v1_stem(x_input)
# 5 x inception_resnet_v1_A
for i in range(5):
x = inception_resnet_v1_A(x, scale_residual=False)
# reduction_resnet_A
x = reduction_resnet_A(x, k=192, l=192, m=256, n=384)
# 10 x inception_resnet_v1_B
for i in range(10):
x = inception_resnet_v1_B(x, scale_residual=True)
# Reduction B
x = reduction_resnet_B(x)
# 5 x Inception C
for i in range(5):
x = inception_resnet_v1_C(x, scale_residual=True)
# Average Pooling
x = AveragePooling2D(pool_size=(8, 8))(x)
# dropout
x = Dropout(0.2)(x)
x = Flatten()(x)
x = Dense(units=nb_classes, activation='softmax')(x)
return Model(inputs=x_input, outputs=x, name='Inception-Resnet-v1')
if __name__ == '__main__':
inception_resnet_v1_model = inception_resnet_v1_backbone()
plot_model(inception_resnet_v1_model, to_file='inception_resnet_v1.png', show_shapes=True)
4.3 inception_resnet_v2
from keras.layers import Input, add
from keras.layers.merge import concatenate
from keras.layers import Dense, Dropout, Lambda, Flatten, Activation, Conv2D
from keras.layers.convolutional import MaxPooling2D, AveragePooling2D
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from inception_resnet_v1 import reduction_resnet_A
from keras.utils import plot_model
import keras.backend as K
RESNET_V2_A_COUNT = 0
RESNET_V2_B_COUNT = 0
RESNET_V2_C_COUNT = 0
def resnet_v2_stem(x_input):
'''The stem of the pure Inception-v4 and Inception-ResNet-v2 networks. This is input part of those networks.'''
# Input shape is 299 * 299 * 3 (Tensorflow dimension ordering)
with K.name_scope("stem"):
x = Conv2D(32, (3, 3), activation="relu", strides=(2, 2))(x_input) # 149 * 149 * 32
x = Conv2D(32, (3, 3), activation="relu")(x) # 147 * 147 * 32
x = Conv2D(64, (3, 3), activation="relu", padding="same")(x) # 147 * 147 * 64
x1 = MaxPooling2D((3, 3), strides=(2, 2))(x)
x2 = Conv2D(96, (3, 3), activation="relu", strides=(2, 2))(x)
x = concatenate([x1, x2], axis=-1) # 73 * 73 * 160
x1 = Conv2D(64, (1, 1), activation="relu", padding="same")(x)
x1 = Conv2D(96, (3, 3), activation="relu")(x1)
x2 = Conv2D(64, (1, 1), activation="relu", padding="same")(x)
x2 = Conv2D(64, (7, 1), activation="relu", padding="same")(x2)
x2 = Conv2D(64, (1, 7), activation="relu", padding="same")(x2)
x2 = Conv2D(96, (3, 3), activation="relu", padding="valid")(x2)
x = concatenate([x1, x2], axis=-1) # 71 * 71 * 192
x1 = Conv2D(192, (3, 3), activation="relu", strides=(2, 2))(x)
x2 = MaxPooling2D((3, 3), strides=(2, 2))(x)
x = concatenate([x1, x2], axis=-1) # 35 * 35 * 384
x = BatchNormalization(axis=-1)(x)
x = Activation("relu")(x)
return x
def inception_resnet_v2_A(x_input, scale_residual=True):
'''Architecture of Inception_ResNet_A block which is a 35 * 35 grid module.'''
global RESNET_V2_A_COUNT
RESNET_V2_A_COUNT += 1
with K.name_scope('inception_resnet_v2_A' + str(RESNET_V2_A_COUNT)):
ar1 = Conv2D(32, (1, 1), activation="relu", padding="same")(x_input)
ar2 = Conv2D(32, (1, 1), activation="relu", padding="same")(x_input)
ar2 = Conv2D(32, (3, 3), activation="relu", padding="same")(ar2)
ar3 = Conv2D(32, (1, 1), activation="relu", padding="same")(x_input)
ar3 = Conv2D(48, (3, 3), activation="relu", padding="same")(ar3)
ar3 = Conv2D(64, (3, 3), activation="relu", padding="same")(ar3)
merged = concatenate([ar1, ar2, ar3], axis=-1)
ar = Conv2D(384, (1, 1), activation="linear", padding="same")(merged)
if scale_residual: ar = Lambda(lambda a: a * 0.1)(ar)
x = add([x_input, ar])
x = BatchNormalization(axis=-1)(x)
x = Activation("relu")(x)
return x
def inception_resnet_v2_B(x_input, scale_residual=True):
'''Architecture of Inception_ResNet_B block which is a 17 * 17 grid module.'''
global RESNET_V2_B_COUNT
RESNET_V2_B_COUNT += 1
with K.name_scope('inception_resnet_v2_B' + str(RESNET_V2_B_COUNT)):
br1 = Conv2D(192, (1, 1), activation="relu", padding="same")(x_input)
br2 = Conv2D(128, (1, 1), activation="relu", padding="same")(x_input)
br2 = Conv2D(160, (1, 7), activation="relu", padding="same")(br2)
br2 = Conv2D(192, (7, 1), activation="relu", padding="same")(br2)
merged = concatenate([br1, br2], axis=-1)
br = Conv2D(1152, (1, 1), activation="linear", padding="same")(merged)
if scale_residual: br = Lambda(lambda b: b * 0.1)(br)
x = add([x_input, br])
x = BatchNormalization(axis=-1)(x)
x = Activation("relu")(x)
return x
def inception_resnet_v2_C(x_input, scale_residual=True):
'''Architecture of Inception_ResNet_C block which is a 8 * 8 grid module.'''
global RESNET_V2_C_COUNT
RESNET_V2_C_COUNT += 1
with K.name_scope('inception_resnet_v2_C' + str(RESNET_V2_C_COUNT)):
cr1 = Conv2D(192, (1, 1), activation="relu", padding="same")(x_input)
cr2 = Conv2D(192, (1, 1), activation="relu", padding="same")(x_input)
cr2 = Conv2D(224, (1, 3), activation="relu", padding="same")(cr2)
cr2 = Conv2D(256, (3, 1), activation="relu", padding="same")(cr2)
merged = concatenate([cr1, cr2], axis=-1)
cr = Conv2D(2144, (1, 1), activation="linear", padding="same")(merged)
if scale_residual: cr = Lambda(lambda c: c * 0.1)(cr)
x = add([x_input, cr])
x = BatchNormalization(axis=-1)(x)
x = Activation("relu")(x)
return x
def reduction_resnet_v2_B(x_input):
'''Architecture of a 17 * 17 to 8 * 8 Reduction_ResNet_B block.'''
with K.name_scope('reduction_resnet_v2_B'):
rbr1 = MaxPooling2D((3, 3), strides=(2, 2), padding="valid")(x_input)
rbr2 = Conv2D(256, (1, 1), activation="relu", padding="same")(x_input)
rbr2 = Conv2D(384, (3, 3), activation="relu", strides=(2, 2))(rbr2)
rbr3 = Conv2D(256, (1, 1), activation="relu", padding="same")(x_input)
rbr3 = Conv2D(288, (3, 3), activation="relu", strides=(2, 2))(rbr3)
rbr4 = Conv2D(256, (1, 1), activation="relu", padding="same")(x_input)
rbr4 = Conv2D(288, (3, 3), activation="relu", padding="same")(rbr4)
rbr4 = Conv2D(320, (3, 3), activation="relu", strides=(2, 2))(rbr4)
merged = concatenate([rbr1, rbr2, rbr3, rbr4], axis=-1)
rbr = BatchNormalization(axis=-1)(merged)
rbr = Activation("relu")(rbr)
return rbr
def inception_resnet_v2(nb_classes=1001, scale=True):
'''Creates the Inception_ResNet_v1 network.'''
init = Input((299, 299, 3)) # Channels last, as using Tensorflow backend with Tensorflow image dimension ordering
# Input shape is 299 * 299 * 3
x = resnet_v2_stem(init) # Output: 35 * 35 * 256
# 5 x Inception A
for i in range(5):
x = inception_resnet_v2_A(x, scale_residual=scale)
# Output: 35 * 35 * 256
# Reduction A
x = reduction_resnet_A(x, k=256, l=256, m=384, n=384) # Output: 17 * 17 * 896
# 10 x Inception B
for i in range(10):
x = inception_resnet_v2_B(x, scale_residual=scale)
# Output: 17 * 17 * 896
# Reduction B
x = reduction_resnet_v2_B(x) # Output: 8 * 8 * 1792
# 5 x Inception C
for i in range(5):
x = inception_resnet_v2_C(x, scale_residual=scale)
# Output: 8 * 8 * 1792
# Average Pooling
x = AveragePooling2D((8, 8))(x) # Output: 1792
# Dropout
x = Dropout(0.2)(x) # Keep dropout 0.2 as mentioned in the paper
x = Flatten()(x) # Output: 1792
# Output layer
output = Dense(units=nb_classes, activation="softmax")(x) # Output: 10000
model = Model(init, output, name="Inception-ResNet-v2")
return model
if __name__ == "__main__":
inception_resnet_v2_model = inception_resnet_v2()
plot_model(inception_resnet_v2_model, to_file='inception_resnet_v2.png', show_shapes=True)
InceptionV4的更多相关文章
- 【Network Architecture】Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning(转)
文章来源: https://www.cnblogs.com/shouhuxianjian/p/7786760.html Feature Extractor[Inception v4] 0. 背景 随着 ...
- Tensorflow 训练inceptionV4 并移植
安装brazel (请使用最新版的brazel 和最新版的tensorflow ,版本不匹配会出错!!!) 下载bazel-0.23 https://pan.baidu.com/s/1X ...
- (转) Awesome - Most Cited Deep Learning Papers
转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers ...
- awesome-very-deep-learning
awesome-very-deep-learning is a curated list for papers and code about implementing and training ver ...
- 学习笔记TF032:实现Google Inception Net
Google Inception Net,ILSVRC 2014比赛第一名.控制计算量.参数量,分类性能非常好.V1,top-5错误率6.67%,22层,15亿次浮点运算,500万参数(AlexNet ...
- 读论文系列:Deep transfer learning person re-identification
读论文系列:Deep transfer learning person re-identification arxiv 2016 by Mengyue Geng, Yaowei Wang, Tao X ...
- 【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络GoogLeNet
前面讲了LeNet.AlexNet和Vgg,这周来讲讲GoogLeNet.GoogLeNet是由google的Christian Szegedy等人在2014年的论文<Going Deeper ...
- 【深度学习系列】用PaddlePaddle和Tensorflow实现GoogLeNet InceptionV2/V3/V4
上一篇文章我们引出了GoogLeNet InceptionV1的网络结构,这篇文章中我们会详细讲到Inception V2/V3/V4的发展历程以及它们的网络结构和亮点. GoogLeNet Ince ...
- 吐血整理:人工智能PDF中文教材资源包2.73G基本包含全部学习资料-人工智能学习书单
吐血整理:人工智能PDF中文教材资源包2.73G基本包含全部学习资料 人工智能学习书单(关注微信公众号:aibbtcom获取更多资源) 文末附百度网盘下载地址 人工神经网络与盲信号处理 人工神经网络与 ...
随机推荐
- 剑指 Offer 09. 用两个栈实现队列
剑指 Offer 09. 用两个栈实现队列 用两个栈实现一个队列.队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的 ...
- Mysql表结构转成Oracle
Navicat数据库连接工具
- v-if和v-show的使用和特点
v-if的特点是每次都会重新删除或创建操作 v-show的特点是每次不会进行DOM的删除和创建操作,只是切换了元素的display:none样式 <div id="app"& ...
- 01-最大子列和问题(java)
问题描述:给定N个整数的序列{A1,A2,A3,…,An},求解子列和中最大的值. 这里我们给出{-2,11,-4,13,-5,-2}这样一个序列,正确的最大子列和为20 该题是在数据结构与算法中经常 ...
- 深入理解JVM(③)虚拟机的类加载过程
前言 上一篇我们介绍到一个类的生命周期大概分7个阶段:加载.验证.准备.解析.初始化.使用.卸载.并且也介绍了类的加载时机,下面我们将介绍一下虚拟机中类的加载的全过程.主要是类生命周期的,加载.验证. ...
- Laravel 如何在blade文件中使用Vue组件
Laravel 如何在blade文件中使用Vue组件 1. 安装laravel/ui依赖包 composer require laravel/ui 2.生成vue基本脚手架 php artisan u ...
- cv2.VideoCapture 图像旋转问题
使用cv2.VideoCapture()时发现,分解后的图片均顺时针旋转90度, 为了重新转回来使用np.rot90(mat, 1)即逆时针将矩阵旋转90度. 大功告成!!!
- Redis系列(六):数据结构QuickList(快速列表)源码解析
1.介绍 Redis在3.2版本之前List的底层编码是ZipList和LinkedList实现的 在3.2版本之后,重新引入了QuickList的数据结构,列表的底层都是QuickList实现 当L ...
- C# 自定义常用代码段快捷键
不断更新中... 分享地址:http://pan.baidu.com/s/15oE0X
- 每日一题 - 剑指 Offer 33. 二叉搜索树的后序遍历序列
题目信息 时间: 2019-06-26 题目链接:Leetcode tag:分治算法 递归 难易程度:中等 题目描述: 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果.如果是则返回 tr ...