斜率优化DP:DP的一种优化形式,主要用于优化如下形式的DP

f[i]=f[j]+x[i]*x[j]+...

学习可以参考下面的博客:

https://www.cnblogs.com/Xing-Ling/p/11210179.html

https://blog.csdn.net/xiang_6/article/details/81450647

我的做法结合了这两种方案。

首先,用代数法求出进行状态更新的条件。

然后,判断上凸还是下凸。

在下一步,求出斜率,用于把起始且并不优的状态淘汰。

最后,就可以写代码了

主要题目:

loj10188装箱游戏

 1 #include<bits/stdc++.h>
2 #define rll register long long
3 using namespace std;
4 const int maxn=5e7+10;
5 typedef long long ll;
6 ll sum[maxn],f[maxn],q[maxn];
7 ll n,l,h=1,t=0;
8
9 inline ll min(rll a,rll b){return a<b?a:b;}
10 inline ll X(rll i){return sum[i]+i;}
11 inline ll Y(rll i){return f[i]+(sum[i]+i+1+l)*(sum[i]+i+1+l);}
12 inline long double xl(rll a,rll b){return (long double)(Y(b)-Y(a))/(X(b)-X(a));}
13
14 int main()
15 {
16 scanf("%lld%lld",&n,&l);
17 for(ll i=1;i<=n;++i)
18 {
19 scanf("%lld",sum+i);
20 sum[i]+=sum[i-1];
21 }
22 q[++t]=0;
23 for(ll i=1;i<=n;++i)
24 {
25 while(h<t && xl(q[h],q[h+1])<=2*(sum[i]+i))++h;
26 int j=q[h];
27 f[i]=f[j]+(sum[i]-sum[j]+i-j-1-l)*(sum[i]-sum[j]+i-j-1-l);
28 while(h<t && xl(q[t],i)<=xl(q[t-1],q[t]))t--;
29 q[++t]=i;
30 }
31 cout<<f[n];
32 return 0;
33 }

loj10189仓库建设

 1 #include <bits/stdc++.h>
2 using namespace std;
3 typedef long long ll;
4 const int maxn = 1e6 + 10;
5 ll n;
6 ll x[maxn], sum[maxn], s[maxn], c[maxn], f[maxn];
7 ll tail, head, q[maxn];
8 inline ll X(ll a) { return sum[a]; }
9 inline ll Y(ll a) { return f[a] + s[a]; }
10 inline long double xl(ll a, ll b) { return (long double)(Y(b) - Y(a)) / (X(b) - X(a)); }
11
12 int main() {
13 scanf("%lld", &n);
14 for (ll p, i = 1; i <= n; ++i) {
15 scanf("%lld%lld%lld", x + i, &p, c + i);
16 sum[i] = sum[i - 1] + p;
17 s[i] = s[i - 1] + p * x[i];
18 }
19 tail = 0, head = 1;
20 q[++tail] = 0;
21 for (ll i = 1; i <= n; ++i) {
22 while (tail > head && xl(q[head], q[head + 1]) <= x[i]) ++head;
23 int j = q[head];
24 f[i] = f[j] + x[i] * (sum[i] - sum[j]) - s[i] + s[j] + c[i];
25 while (tail > head && xl(q[tail], i) <= xl(q[tail - 1], q[tail])) --tail;
26 q[++tail] = i;
27 }
28 cout << f[n];
29 return 0;
30 }

loj10190特别行动队

 1 #include <bits/stdc++.h>
2 using namespace std;
3 const int maxn = 1e6 + 10;
4 typedef long long ll;
5 ll q[maxn], h = 1, t = 0;
6 ll n, a, b, c, s[maxn], f[maxn];
7 inline ll X(ll i) { return s[i]; }
8 inline ll Y(ll i) { return f[i] + a * s[i] * s[i] - b * s[i]; }
9 inline long double xl(ll a, ll b) { return (long double)(Y(b) - Y(a)) / (X(b) - X(a)); }
10 int main() {
11 scanf("%lld%lld%lld%lld", &n, &a, &b, &c);
12 for (int i = 1; i <= n; ++i) {
13 scanf("%lld", s + i);
14 s[i] += s[i - 1];
15 }
16 q[++t] = 0;
17 for (int i = 1; i <= n; ++i) {
18 while (t > h && xl(q[h], q[h + 1]) >= 2 * a * s[i]) ++h;
19 int j = q[h];
20 f[i] = f[j] + a * (s[i] - s[j]) * (s[i] - s[j]) + b * (s[i] - s[j]) + c;
21 while (t > h && xl(q[t - 1], q[t]) <= xl(q[t], i)) --t;
22 q[++t] = i;
23 }
24 cout << f[n];
25 return 0;
26 }

loj10191打印文章

 1 #include <bits/stdc++.h>
2 using namespace std;
3 typedef long long ll;
4 const int maxn = 5e5 + 10;
5 ll n, m;
6 ll s[maxn], f[maxn];
7 ll h, t, q[maxn];
8 inline ll X(ll i) { return s[i]; }
9 inline ll Y(ll i) { return f[i] + s[i] * s[i]; }
10 // inline long double xl(ll a,ll b){return (long double)(Y(b)-Y(a))/(X(b)-X(a));}
11 int main() {
12 while (scanf("%lld%lld", &n, &m) == 2) {
13 memset(s, 0, sizeof s);
14 memset(f, 0, sizeof f);
15 memset(q, 0, sizeof q);
16 h = 1, t = 0;
17 for (int i = 1; i <= n; ++i) {
18 scanf("%lld", s + i);
19 s[i] += s[i - 1];
20 }
21 q[++t] = 0;
22 for (int i = 1; i <= n; ++i) {
23 while (h < t && Y(q[h + 1]) - Y(q[h]) <= 2 * s[i] * (X(q[h + 1]) - X(q[h]))) ++h;
24 ll j = q[h];
25 f[i] = f[j] + (s[i] - s[j]) * (s[i] - s[j]) + m;
26 while (h < t &&
27 (Y(q[t]) - Y(q[t - 1])) * (X(i) - X(q[t])) >= (Y(i) - Y(q[t])) * (X(q[t]) - X(q[t - 1])))
28 --t;
29 q[++t] = i;
30 }
31 printf("%lld\n", f[n]);
32 }
33 return 0;
34 }

loj10192锯木厂选址

 1 #include <bits/stdc++.h>
2 using namespace std;
3 const int maxn = 2e5 + 10;
4 typedef long long ll;
5 ll n, dis[maxn], w[maxn], sw[maxn], swd[maxn], f[maxn][2];
6 ll h = 1, t, q[maxn];
7
8 inline ll x(ll i) { return sw[i]; }
9 inline ll y(ll i) { return f[i][0] + swd[i]; }
10
11 int main() {
12 scanf("%lld", &n);
13 for (ll d, i = 1; i <= n; ++i) {
14 scanf("%lld%lld", w + i, &d);
15 dis[i + 1] = dis[i] + d;
16 sw[i] = sw[i - 1] + w[i];
17 swd[i] = swd[i - 1] + w[i] * dis[i];
18 }
19 sw[n + 1] = sw[n];
20 swd[n + 1] = swd[n];
21 for (ll i = 2; i <= n; ++i) f[i][0] = dis[i] * sw[i] - swd[i];
22 q[++t] = 1;
23 for (ll i = 2; i <= n; ++i) {
24 while (h < t && y(q[h + 1]) - y(q[h]) <= dis[i] * (x(q[h + 1]) - x(q[h]))) ++h;
25 ll j = q[h];
26 f[i][1] = f[j][0] + dis[i] * (sw[i] - sw[j]) - (swd[i] - swd[j]);
27 while (h < t &&
28 (y(q[t]) - y(q[t - 1])) * (x(i) - x(q[t])) >= (y(i) - y(q[t])) * (x(q[t]) - x(q[t - 1])))
29 --t;
30 q[++t] = i;
31 }
32 ll ans = (ll)1 * 100000000 * 100000000;
33 for (int i = 1; i <= n; ++i)
34 if (ans > f[i][1] + dis[n + 1] * (sw[n + 1] - sw[i]) - (swd[n + 1] - swd[i]))
35 ans = f[i][1] + dis[n + 1] * (sw[n + 1] - sw[i]) - (swd[n + 1] - swd[i]);
36 cout << ans;
37
38 return 0;
39 }

loj10184任务安排1

 1 #include <bits/stdc++.h>
2 using namespace std;
3 typedef long long ll;
4 const int maxn = 5e3 + 10;
5 ll n, s;
6 ll f[maxn], sc[maxn], st[maxn];
7
8 int main() {
9 scanf("%lld%lld", &n, &s);
10 for (int i = 1; i <= n; ++i) {
11 scanf("%lld%lld", st + i, sc + i);
12 st[i] += st[i - 1];
13 sc[i] += sc[i - 1];
14 }
15 for (int i = n; i > 0; --i) {
16 f[i] = (st[n] + s) * (sc[n] - sc[i - 1]);
17 for (int j = i + 1; j <= n; ++j) {
18 if (f[i] > f[j] + st[j - 1] * (sc[j - 1] - sc[i - 1]) + (sc[n] - sc[i - 1]) * s)
19 f[i] = f[j] + st[j - 1] * (sc[j - 1] - sc[i - 1]) + (sc[n] - sc[i - 1]) * s;
20 }
21 }
22 cout << f[1];
23 return 0;
24 }

loj10185任务安排2

 1 #include <bits/stdc++.h>
2 using namespace std;
3 typedef long long ll;
4 const int maxn = 1e4 + 10;
5 ll n, s;
6 ll f[maxn], sc[maxn], st[maxn];
7
8 int main() {
9 scanf("%lld%lld", &n, &s);
10 for (int i = 1; i <= n; ++i) {
11 scanf("%lld%lld", st + i, sc + i);
12 st[i] += st[i - 1];
13 sc[i] += sc[i - 1];
14 }
15 for (int i = n; i > 0; --i) {
16 f[i] = (st[n] + s) * (sc[n] - sc[i - 1]);
17 for (int j = i + 1; j <= n; ++j) {
18 if (f[i] > f[j] + st[j - 1] * (sc[j - 1] - sc[i - 1]) + (sc[n] - sc[i - 1]) * s)
19 f[i] = f[j] + st[j - 1] * (sc[j - 1] - sc[i - 1]) + (sc[n] - sc[i - 1]) * s;
20 }
21 }
22 cout << f[1];
23 return 0;
24 }

一本通提高篇——斜率优化DP的更多相关文章

  1. 【笔记篇】斜率优化dp(一) HNOI2008玩具装箱

    斜率优化dp 本来想直接肝这玩意的结果还是被忽悠着做了两道数论 现在整天浑浑噩噩无心学习甚至都不是太想颓废是不是药丸的表现 各位要知道我就是故意要打删除线并不是因为排版错乱 反正就是一个del标签嘛并 ...

  2. 总结-一本通提高篇&算竞进阶记录

    当一个人看见星空,就再无法忍受黑暗 为了点亮渐渐沉寂的星空 不想就这样退役 一定不会鸽の坑 . 一本通提高篇 . 算竞进阶 . CDQ & 整体二分 . 平衡树 . LCT . 字符串 . 随 ...

  3. 蒟蒻关于斜率优化DP简单的总结

    斜率优化DP 题外话 考试的时候被这个玩意弄得瑟瑟发抖 大概是yybGG的Day4 小蒟蒻表示根本不会做..... 然后自己默默地搞了一下斜率优化 这里算是开始吗?? 其实我讲的会非常非常非常简单,, ...

  4. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  5. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  6. [BZOJ3156]防御准备(斜率优化DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP

  7. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

  8. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  9. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

随机推荐

  1. [Machine Learning] 单变量线性回归(Linear Regression with One Variable) - 线性回归-代价函数-梯度下降法-学习率

    单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方 ...

  2. SSRF之利用dict和gopher吊打Redis

    SSRF之利用dict和gopher吊打Redis 写在前面 SSRF打Redis也是老生常谈的东西了,这里复现学习一下之前在xz看到某师傅写的关于SSRF利用dict和gopher打内网服务的文章, ...

  3. FSMC全称“静态存储器控制器”。

    FSMC全称"静态存储器控制器". 使用FSMC控制器后,可以把FSMC提供的FSMC_A[25:0]作为地址线,而把FSMC提供的FSMC_D[15:0]作为数据总线. (1)当 ...

  4. JavaScript基础知识梳理

    一.简单数据类型 Number.String.Boolean.Undefined.Null 1.Number: 方法: toPrecision( ) 返回指定长度的数字(范围是1到100) toFix ...

  5. 编写 Dockerfile 生成自定义镜像

    一般情况下我们可以从公共渠道诸如 DockerHub 获取镜像上获取镜像,但是在实际生产过程中,往往需要定制化的镜像,例如修改一些配置文件,增加一些特殊的命令或软件等需求,这时就需要通过编写 Dock ...

  6. Kafka 探险 - 架构简介

    Kafka 探险 - 架构简介 这个 Kafka 的专题,我会从系统整体架构,设计到代码落地.和大家一起杠源码,学技巧,涨知识.希望大家持续关注一起见证成长! 我相信:技术的道路,十年如一日!十年磨一 ...

  7. 用python+sklearn(机器学习)实现天气预报 准备

    用python+sklearn机器学习实现天气预报 准备 项目地址 系列教程 0.流程介绍 1. 环境搭建 a.python b.涉及到的机器学习相关库 sklearn panda seaborn j ...

  8. 十八般武艺玩转GaussDB(DWS)性能调优:路径干预

    摘要:路径生成是表关联方式确定的主要阶段,本文介绍了几个影响路径生成的要素:cost_param, scan方式,join方式,stream方式,并从原理上分析如何干预路径的生成. 一.cost模型选 ...

  9. 发现一个怪象windows 7系统上老是丢包windows 10网络正常

    不知何故障,同一个局域网,windows 10系统上不丢包,windows 7系统老是丢包,不知是不是这二个系统的差区别,还是大家都有这样的情况. 相互PC之间ping也又不丢包,只有windos 7 ...

  10. VsCode/Pycharm配合python env 使用

    前言 用惯了vscode,这几天试了一下pycharm,还是回来了. pycharm一个好处就是python env 环境支持的比较好, vscode虽然也支持但是要改一些东西 env的使用查看我的上 ...