之前在 大话Spark(2)里讲过Spark Yarn-Client的运行模式,有同学反馈与Cluster模式没有对比, 这里我重新整理了三张图分别看下Standalone,Yarn-Client 和 Yarn-Cluster的运行流程。

1、独立(Standalone)运行模式

独立运行模式是Spark自身实现的资源调度框架,由客户端、Master节点和多个Worker节点组成。其中SparkContext既可以运行在Master节点上,也可以运行在客户端。

Worker节点可以通过ExecutorRunner运行在当前节点上的CoarseGrainedExecutorBackend进程,每个Worker节点上存在一个或多个CoarseGrainedExecutorBackend进程,每个进程包含一个Executor对象。 该对象持有一个线程池,每个线程可以执行一个task。

如上图独立模式运行流程图所示:

  1. 启动应用程序,在SparkContext启动过程中,先初始化DAGScheduler 和 TaskSchedulerImpl两个调度器, 同时初始化SparkDeploySchedulerBackend,并在其内部启动DriverEndpoint 和 ClientEndpoint
  2. ClientEndpoint向Master注册应用程序。Master收到注册消息后把应用放到待运行应用列表,使用自己的资源调度算法分配Worker资源给应用程序。
  3. 应用程序获得Worker时,Master会通知Worker中的WorkerEndpoint创建CoarseGrainedExecutorBackend进程,在该进程中创建执行容器Executor。
  4. Executor创建完毕后发送消息到Master 和 DriverEndpoint。在SparkContext创建成功后, 等待Driver端发过来的任务。
  5. SparkContext分配任务给CoarseGrainedExecutorBackend执行,在Executor上按照一定调度执行任务(这些任务就是自己写的代码)
  6. CoarseGrainedExecutorBackend在处理任务的过程中把任务状态发送给SparkContext,SparkContext根据任务不同的结果进行处理。如果任务集处理完毕后,则继续发送其他任务集。
  7. 应用程序运行完成后,SparkContext会进行资源回收。

补充

  1. SparkContext对任务的划分:每个Action操作都会触发一个job,job给到DAGScheduler,DAGScheduler把job划分成多个Stage(Stage划分算法),每个Stage创建一个Taskset, TaskSet提交给TaskScheduler,把这些task分配到之前注册来的executor上。
  2. task的类型分为ShuffleMapTask 和 ResultTask, 只有最后一个task是ResultTask。每一个task针对rdd的一个partition并行执行, 一个stage的task会连续执行一个后续算子。

2、Yarn-Client运行模式



Yarn-Client工作流程如上图所示:

  1. 启动应用程序,在SparkContext启动过程中, 初始化DAGScheduler调度器,使用反射方法初始化YarnScheduler 和 YarnClientSchedulerBackend。YarnClientSchedulerBackend内部启动DriverEndpoint 和 Client。Client向Yarn集群的ResourceManager申请启动Application Master。
  2. ResourceManager收到请求后,在集群中选一个NodeManger,为此应用申请一个Container, 并在其中启动Application Master。前面讲过,Client模式中的ApplicationMaster不运行SparkContext,只与SparkContext进行联系进行资源的派分。
  3. SparkContext启动完毕后,与Application Master通信,向Resource Manager注册, 根据任务信息申请Container资源。
  4. Application Master申请到资源后,与NodeManager通信,在Container中启动YarnClientSchedulerBackend,YarnClientSchedulerBackend向客户端中的SparkContext注册并申请taskset。
  5. SparkContext和运行中的任务保持通信,获取任务的状态和进度,随时掌握各个任务的运行状况,可以在任务失败时重启任务。
  6. 应用程序运行完成后,SparkContext向ResourceManager申请注销并关闭自己。

3、Yarn-Cluster运行模式



Yarn-Cluster工作流程如上图所示:

  1. 客户端启动Client项YARN集群提交应用程序。
  2. ResourceManager收到请求后,再集群中选一个NodeManger,为此应用申请一个Container, 并在其中启动Application Master。在Application Master中进行SparkContext的初始化操作
  3. Application Master向ResourceManager注册,为各个任务申请资源,并监控任务的运行状态直到结束
  4. Application Master申请到资源后,与NodeManager通信,在Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend向客户端中的SparkContext注册并申请taskset。
  5. CoarseGrainedExecutorBackend运行任务并向Application Master汇报运行的状态和进度.
  6. 应用程序运行完成后,SparkContext向ResourceManager申请注销并关闭。

小结

Spark虽然有多种运行模式,但是其运行架构基本上由三部分组成,

  • SparkContext
  • ClusterManager(集群资源管理器)
  • Executor(任务执行进程)

SparkContext用于负责与ClusterManager通信,进行资源的申请、任务的分配和监控等,负责作业执行的全生命周期管理。

ClusterManager提供了资源的分配和管理,不同模式下角色有所不同。Standalone模式下由Master提供,Yarn模式下由ResourceManager担任。

原文链接:

大话Spark(5)-三图详述Spark Standalone/Client/Cluster运行模式

大话Spark(5)-三图详述Spark Standalone/Client/Cluster运行模式的更多相关文章

  1. Spark Core 资源调度与任务调度(standalone client 流程描述)

    Spark Core 资源调度与任务调度(standalone client 流程描述) Spark集群启动:      集群启动后,Worker会向Master汇报资源情况(实际上将Worker的资 ...

  2. Tomcat 的三种(bio,nio.apr) 高级 Connector 运行模式及apr配置

    转: http://www.oschina.net/question/54100_16195omcat的运行模式有3种.修改他们的运行模式.3种模式的运行是否成功,可以看他的启动控制台,或者启动日志. ...

  3. Spark 学习(三) maven 编译spark 源码

    spark 源码编译 scala 版本2.11.4 os:ubuntu 14.04 64位 memery 3G spark :1.1.0 下载源码后解压 1 准备环境,安装jdk和scala,具体参考 ...

  4. Spark思维导图之Spark SQL

  5. Spark思维导图之Spark Streaming

  6. Spark思维导图之Spark RDD

  7. Spark思维导图之Spark Core

  8. 【转】Tomcat 的三种(bio,nio.apr) 高级 Connector 运行模式

    转载地址:http://www.oschina.net/question/54100_16195   tomcat的运行模式有3种.修改他们的运行模式.3种模式的运行是否成功,可以看他的启动控制台,或 ...

  9. Tomcat 的三种(bio,nio.apr) 高级 Connector 运行模式

    tomcat的运行模式有3种.修改他们的运行模式.3种模式的运行是否成功,可以看他的启动控制台,或者启动日志.或者登录他们的默认页面http://localhost:8080/查看其中的服务器状态. ...

随机推荐

  1. AtCoder Beginner Contest 176 E - Bomber (思维)

    题意:有一张\(H\)x\(W\)的图,给你\(M\)个目标的位置,你可以在图中放置一枚炸弹,炸弹可以摧毁所在的那一行和一列,问最多可以摧毁多少目标. 题解:首先我们记录某一行和某一列目标最多的数目, ...

  2. zjnu1762 U (线段树)

    Description Mirko is hungry as a bear, scratch that, programmer and has stumbled upon a local restau ...

  3. Codeforces Round #582 (Div. 3) E. Two Small Strings (构造,思维,全排列)

    题意:给你两个长度为\(2\)的字符串\(s\)和\(t\),你需要构造一个长度为\(3n\)的字符串,满足:含有\(n\)个\(a\),\(n\)个\(b\),\(n\)个\(c\),并且\(s\) ...

  4. java——类、对象、private、this关键字

    一.定义  二.类的使用 实例:定义的类要在一个class文件内,实例化类的对象要在另一个文件内 类文件: 实例文件: 对象内存图: 先主函数入栈,之后新开一个对象存入堆内存中,之后调用的call方法 ...

  5. 在.NET中体验GraphQL

    前言 以前需要提供Web服务接口的时候,除了标准的WEBAPI形式,还考虑了OData.GraphQL等形式,虽然实现思路上有很大的区别,但对使用方来说,都是将查询的主动权让渡给了前端,让调用方能够更 ...

  6. spark 一、编程指南

    总览 第一.每个spark 应用都有一个驱动程序去运行着主函数和再每个节点上的并行操作. spark提供了一个RDD(弹性分布式数据集)的数据集合,可以通过不同的节点并行操作运算,可以通过hdfs文件 ...

  7. While & For 循环

    While 循环 可以将 While 循环称为 "条件循环" While 循环语法 # 条件为 true 就执行循环体代码,条件变为 false 循环结束 while 条件 do ...

  8. NFS 共享存储

    目录 环境准备 NFS服务端 NFS客户端 部署时常见报错 httpd服务 NFS 共享存储的坑 环境准备 主机名 WanIP(Wide Area Network) LanIP(Local Area ...

  9. sqli-libs(4) 双引号报错

    经测试,发现单引号不报错,而双引号却报错了 通过查看源码,发现下图中红色的箭头,如果不知道是什么意思,我们可以复制出来看看是什么含义: <?php$id=1;$id='"' .$id. ...

  10. 析构函数 & 构造函数

    析构函数 & 构造函数 C++ 析构函数(destructor) 与构造函数相反,当对象结束其生命周期,如对象所在的函数已调用完毕时,系统自动执行析构函数. 析构函数往往用来做"清理 ...