词嵌入之Word2Vec
词嵌入要解决什么问题
在自然语言系统中,词被看作最为基本的单元,如何将词进行向量化表示是一个很基本的问题,词嵌入(word embedding)就是把词映射为低维实数域向量的技术。
下面先介绍几种词的离散表示技术,然后总结其缺点,最后介绍词的分布式表示及其代表技术(word2vec)。
词的离散表示
One-hot表示
根据语料构造一个大小为V的词汇表,并为每一个词分配一个id。
每个词都可以表示为一个V维向量,除了该词id对应的维度为1外,其余维度为0。
n-gram
与One-hot类似,只是统计单元由单个的词变成了连续的几个词,如2-gram是统计连续的两个单词构造词典。
离散表示的缺点
- 词向量维度随着词汇表大小的增长而增长带来的内存问题;
- 词向量过于稀疏,浪费内存,丢失信息;
- 无法衡量词和词之间的关系。
词的分布式表示
词的分布式表示的核心思想是:一个词是由这个词的周边词汇一起来构成精确的语义信息,因此可以用一个词附近的其他词来表示该词。词的分布式表示有以下几种代表方法:
共现矩阵
使用固定大小的滑窗统计词与词在窗口内的共现次数,然后将每个词表示为一个大小为V的矩阵,每个维度为该词与该维度对应词的共现次数。
共现矩阵方法仍然会存在内存问题以及稀疏性问题。
Word2Vec
谷歌2013年提出的Word2Vec是目前最常用的词嵌入模型之一,它实际上是一种浅层的神经网络模型,有两种网络结构,分别为CBoW和Skip-gram,目的都是得到词的稠密表示。需要指出的是,两种方法都会先采用滑动窗口的方式来对语料库进行窗口采集,所不同的是窗口内数据的使用方式。
CBoW
对于每一个窗口,CBOW通过中间词两边的上下文来预测中间词,从而学习词向量的表达,即根据context预测target word。CBOW结构如下图:

从数学上看,CBoW模型等价于一个词袋模型的向量乘以一个Embedding矩阵,从而得到一个连续的embedding向量。这也是CBoW模型名称的由来。
设CBoW网络结构中从输入层到隐藏层的矩阵为\(U\in \mathbb{R}^{d*M}\),从隐藏层到输出层的矩阵为\(V\in \mathbb{R}^{d*M}\),其中d为词向量维度,M为词汇表大小。则使用CBoW预测的目标词的概率为:
\[p(w_o|context)=\frac{e^{V_{w_o}^T\sum_{w_c\in context}U_{w_c}}}{\sum_{w\in vocab}e^{V_{w}^T\sum_{w_c\in context}U_{w_c}}}
\]其中,\(U_w\)和\(V_w\)分别是矩阵U和V对应词w的列,vocab为整个词汇表,\(w_o\)为中心词,context为上下文。
Skip-gram
与CBoW相反,Skip-gram使用中间词来预测上下文借此学习词向量,即根据target word来预测context。Skip-gram结构如下图:

继承CBoW中的符号,使用Skip-gram预测的上下文词的概率为:
\[p(w_o|w_i)=\frac{e^{V_{w_o}^TU_{w_i}}}{\sum_{w\in vocab}e^{V_{w}^TU_{w_i}}}
\]其中,\(w_i\)为中心词,\(w_o\)为上下文中的词。
不管是CBoW还是Skip-gram,训练完成后,都是将矩阵U的每一列当作对应词的向量化表示。但我们发现,它们所要最大化的概率中都存在归一化的过程,归一化复杂度正比于词汇表大小,当词汇表很大的时候,这是极其耗时的。因此需要对这一步进行改良,具体改良办法有两种:
层次Softmax
层次Softmax的基本思想是将复杂的归一化概率分解为一系列条件概率乘积的形式,每一层条件概率对应一个二分类问题,可以通过一个简单的逻辑回归函数去拟合。这样,我们将对V个词的概率归一化问题,转化成了对\(\log_2V\)个词的概率拟合问题。
通过构造一棵二叉树可以很直观地理解这一过程,二叉树的每一个叶节点代表一个词,假设词w从根节点到叶节点的路径编码分别为\(e_1,e_2,..e_k\),对应的子树分别为\(T_1,T_2,...,Tk\),其中k为路径长度。以Skip-gram为例,其所要最大化的概率可以转化为:
\[p(w_o|w_i)=\prod_{j=1}^kp(e_j|T_j,V_{w_o}^TU_{w_i})
\]需要指出的是,层次Softmax进行最大化的时候,是对路径上的每一个逻辑回归分别优化的,即假定各逻辑回归间没有关联。
层次Softmax存在的问题是人为增强了词与词之间的耦合性。例如,一个word出现的条件概率的变化,会影响到其路径上所有非叶节点的概率变化,间接地对其他word出现的条件概率带来不同程度的影响。
通常使用霍夫曼编码来构造层次Softmax的二叉树,因为霍夫曼编码可以保证二叉树的平均路径最短,最大程度减小模型的复杂度。
负采样
不同于层次Softmax的修改最大化概率的计算方式,负采样直接修改了需要最大化的概率。
以Skip-gram为例,原始Skip-gram的目标函数为:
\[\arg \max _\theta\prod_{w\in Text}[\prod_{c\in C(w)}p(c|w;\theta)]
\]其中,C(w)表示词w的上下文单词集合,上述概率可以简写为:
\[\arg \max _\theta\prod_{(w,c)\in D}p(c|w;\theta)
\]其中,D为语料库中所有单词和上下文单词的集合。
为了避免计算\(p(c|w;\theta)\)过程中的归一化,可以换一个角度来思考问题。因为Word2Vec的最终目的是得到词向量矩阵U,因此训练任务并非仅仅只能是根据输入词预测输出词的概率,可以将任务修改为预测某一个词是否是输入词的上下文词的概率。这样,问题就由原来的多分类问题转变成了二分类问题,每个二分类问题可以通过一个简单的逻辑回归函数去拟合。目标函数变为:
\[\arg \max _\theta\prod_{(w,c)\in D}p(1|w,c;\theta)
\]由于只存在正样本,这样优化将使得所有词的词向量趋于一致,所以考虑负采样,即引入负样本,那么目标函数变为:
\[\arg \max _\theta\prod_{(w,c)\in D}p(1|w,c;\theta)\prod_{(w,c)\in D'}p(0|w,c;\theta)
\\
=\arg \max _\theta\sum_{(w,c)\in D}\log p(1|w,c;\theta)+\sum_{(w,c)\in D'}\log p(0|w,c;\theta)
\\
=\arg \max _\theta\sum_{(w,c)\in D}\log \sigma(V_c^TU_w)+\sum_{(w,c)\in D'}\log \sigma(-V_c^TU_w)
\]具体负采样的方法是依据词频进行带权采样,假设语料库中词w的频率为\(n_w\),则词w被负采样的概率为:
\[\frac{n_w^\alpha}{\sum_w n_w^\alpha}
\]其中,\(\alpha\)一般为小于1的正数起到放缩作用,使得频率小的词被采样的几率得到提升,频率大的词被采样的几率被降低,这样能增加低频词被采样到的机会,可以显著提高低频词的词向量的准确度。\(\alpha\)在原论文中的取值为0.75。有一个小问题是当负采样到输入词时会丢弃。
词嵌入之Word2Vec的更多相关文章
- [ DLPytorch ] word2vec&词嵌入
word2vec WordEmbedding 对词汇进行多维度的描述,形成一个密集的矩阵.这样每两个词之间的相似性可以通过进行内积的大小体现出来.越大说明距离越远,则越不相似. Analogies(类 ...
- 词向量表示:word2vec与词嵌入
在NLP任务中,训练数据一般是一句话(中文或英文),输入序列数据的每一步是一个字母.我们需要对数据进行的预处理是:先对这些字母使用独热编码再把它输入到RNN中,如字母a表示为(1, 0, 0, 0, ...
- DeepLearning.ai学习笔记(五)序列模型 -- week2 自然语言处理与词嵌入
一.词汇表征 首先回顾一下之前介绍的单词表示方法,即one hot表示法. 如下图示,"Man"这个单词可以用 \(O_{5391}\) 表示,其中O表示One_hot.其他单词同 ...
- 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...
- DLNg序列模型第二周NLP与词嵌入
1.使用词嵌入 给了一个命名实体识别的例子,如果两句分别是“orange farmer”和“apple farmer”,由于两种都是比较常见的,那么可以判断主语为人名. 但是如果是榴莲种植员可能就无法 ...
- NLP领域的ImageNet时代到来:词嵌入「已死」,语言模型当立
http://3g.163.com/all/article/DM995J240511AQHO.html 选自the Gradient 作者:Sebastian Ruder 机器之心编译 计算机视觉领域 ...
- ng-深度学习-课程笔记-16: 自然语言处理与词嵌入(Week2)
1 词汇表征(Word representation) 用one-hot表示单词的一个缺点就是它把每个词孤立起来,这使得算法对词语的相关性泛化不强. 可以使用词嵌入(word embedding)来解 ...
- 词嵌入向量WordEmbedding
词嵌入向量WordEmbedding的原理和生成方法 WordEmbedding 词嵌入向量(WordEmbedding)是NLP里面一个重要的概念,我们可以利用WordEmbedding将一个单 ...
- 词向量 词嵌入 word embedding
词嵌入 word embedding embedding 嵌入 embedding: 嵌入, 在数学上表示一个映射f:x->y, 是将x所在的空间映射到y所在空间上去,并且在x空间中每一个x有y ...
随机推荐
- MySQL中的 ”SELECT FOR UPDATE“ 一次实践
背景 最近工作中遇到一个问题,两个不同的线程会对数据库里的一条数据做修改,如果不加锁的话,会得到错误的结果. 就用了MySQL中for update 这种方式来实现 本文主要测试主键.唯一索引和普通索 ...
- pytest接口测试轻松入门
通过Postman请求结果如下图: 那我们怎么用pytest进行测试呢? 在接口测试,我们要用到requests包,实现代码如下: import pytest import allure import ...
- Python爬取跑男的评论,看看大家都在看谁吧
本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理. 以下文章来源于菜J学Python,作者: J哥 Python爬取爬取腾讯视频弹幕视频讲解 http ...
- Arduino PROGMEM 从程序空间读取float值的方法
方法: 使用avr-libc提供的宏定义: #define pgm_read_float_near(address_short) __LPM_float((uint16_t)(address_shor ...
- c# 递归 yield关键字的用法
1.yield实现的功能 yield return: 先看下面的代码,通过yield return实现了类似用foreach遍历数组的功能,说明yield return也是用来实现迭代器的功能的. u ...
- 登录&单点登录介绍
COOKIE & SESSION & TOKEN 主要用来跟踪会话,识别用户所用.cookie 是客户端,session 是服务端的. 因为 http 是无状态协议,每一次的访问都不知 ...
- HashMap的循环姿势你真的掌握了吗?
hashMap 应该是java程序员工作中用的比较多的一个键值对处理的数据的类型了.这种数据类型一般都会有增删查的方法,今天我们就来看看它的循环方法以前写过一篇关于ArrayList的循环效率问题&l ...
- java面试 题
分布式消息队列 1,为什么使用消息队列啊消息队列有什么优点和缺点啊 2,如何保证消息队列的高可用啊如何保证消息不被重复消费啊 3,kafka,activemq,rabbitmq,rocketmq都有什 ...
- Android ADB原理及常用命令
Android调试桥(ADB, Android Debug Bridge)是一个Android命令行工具,包含在SDK 平台工具包中,adb可以用于连接Android设备,或者模拟器,实现对设备的控制 ...
- TurtleBot3 Waffle (tx2版华夫)(2)系统安装
Tx2系统默认是安装好的,由于镜像文件大于20G,无法上传百度网盘,所以如有需要请联系我们客服:下面主要是操作步骤: 2.1.准备工作 a.准备好利用Jetpack刷过机的Ubuntu的主机(HOST ...