Description

给定一颗 \(n\) 个顶点的树 \(\text T\),共 \(n-1\) 次断边操作,每次将树分为两部分 \(\text T_1, \text T_2\),求:

\[\sum_{(u, v)\in\text E}\left(
\sum_{x \text{为} \text T_1 \text{的重心} } x + \sum_{y \text{为} \text T_2 \text{的重心} } y
\right)
\]

注意,一棵树的重心可能有两个。

Hint

\(1\le n\le 3\times 10^5\)

Solution

不会 \(O(n\log n)\) 或 \(O(n\log^2 n)\) 的做法,这里介绍 \(O(n)\) 的做法 头都写掉了。首先考虑重心的一些性质:

  • 一棵树的重心必定存在于 根所在的重链 上。

    • 略证:我们称 重儿子 \(wson(x)\) 为当前根 \(x\) 的子结点中子树大小(\(size\))最大的那一个。如果 \(size(wson(x)) \le \tfrac 1 2\),那么根自己就是重心;如果 \(size(wson(x)) > \tfrac 1 2\),若是选取非重儿子那必然会有一部分的 \(size > \tfrac 1 2\),因此重心必定在重儿子的子树内。
    • 这有什么用呢?每次找重心可以 只在重链上考虑 而不是整棵树。
  • 一颗子树的重心必然为其重儿子子树的重心的一个 祖先
    • 略证:由上一个性质得,重儿子这个重心、当前子树的重心都在当前子树根所在的重链上,那么加上当前子树根其他部分后重心只会向上偏移,即祖先。
    • 这有什么用呢?这意味着在知道重儿子的重心后,我们不难向上调整出当前新的重心,从而做到 \(O(n)\) 求出 所有子树的重心
  • 一颗树的重心如果存在两个,那么它们 必然相邻
    • 略证:考虑这样一个性质:以重心为根的树,其根的所有子树大小 不超过 原树的 \(\tfrac 1 2\)。“不超过”包含“小于”和“等于”。如果是小于自然就只有一个重心;如果等于,如果以将树根换成原来的根的 重儿子,又会出现恰好等于一半的情况,新的重儿子其实就是 原来的根。如此重心只会在这两个顶点上移动,那么它们显然是相邻的。
    • 这有什么用呢?实际在操作是就可以优先找 深度相对较大(若在,转为有根树两个相邻重心必然一父一子)的重心,在判断其父亲是不是即可。注意,下面预处理的重心都是深度大的。

以上性质是下面算法的理论基础。


我们先令原树的一个重心作为根 \(root\),然后看看断掉一条边 \((x, y)\) 后会发生什么(\(x\) 为 \(y\) 的父亲)。

原树 \(\text T\) 分裂为两部分:以 \(y\) 为根的子树 \(\text T^\prime\),以及剩下部分 \(\text T - \text T^\prime\)。

  • 对于 \(\text T^\prime\) 部分:由于上面已经提到了 \(O(n)\) 预处理所有子树重心的方法,那么这就没啥问题。
  • 对于 \(\text T - \text T^\prime\) 部分:对在原树中删去部分的位置分类讨论:
    • 如果 \(\text T^\prime\) 不在根结点所在重链上,那么原来那个重心会在其所在这条重链上移动。可以预处理出一个 \(\text{ans}_1(s)\) 表示删去大小为 \(s\) 的 非根所在重链部分 后,剩余 \(\text T - \text T^\prime\) 部分的重心是哪个。这个就是跑一遍 \(root\) 所在的重链,复杂度 \(O(n)\)。
    • 如果 \(\text T^\prime\) 在根结点所在重链上,那么 \(root\) 的原来那个重儿子不一定还是重儿子了,对此又分两种情况讨论:
      • 如果重儿子没变,那么原来的重心会 上移,而如果重心本来就是根那必然还是这个根,这就是我们将重心设为 \(root\) 的原因。
      • 如果重儿子变了,首先可以肯定的是,新的重儿子就是原先的 次重儿子,原来的重心会转移到次重子树中。于是也可以预处理一个 \(\text{ans}_2(s)\) 表示删去重链上的大小为 \(s\) 的子树后的重心,具体方法和 \(\text{ans}_1\) 类似,只要在 \(root\) 的位置先走次重儿子即可。复杂度显然也是 \(O(n)\)。

总复杂度显然 \(O(n)\),但是带一个大常数。

Code

实现细节非常多,必须保证自己思路清晰。

/*
* Author : _Wallace_
* Source : https://www.cnblogs.com/-Wallace-/
* Problem : CSP-S 2019 树的重心
*/
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <functional>
#include <vector> const int N = 3e5 + 5;
int n, T;
std::vector<int> adj[N]; int siz[N], wson[N], root;
void findRoot(int x, int f) {
siz[x] = 1, wson[x] = 0;
for (auto y : adj[x]) if (y != f) {
findRoot(y, x), siz[x] += siz[y];
if (siz[wson[x]] < siz[y]) wson[x] = y;
}
if (siz[wson[x]] * 2 <= n && (n - siz[x]) * 2 <= n)
root = x;
} int dep[N], fa[N], sid[N], swson;
void prework(int x, int f) {
siz[x] = 1, dep[x] = dep[fa[x] = f] + 1;
sid[x] = (f == root) ? x : sid[f];
for (auto y : adj[x]) if (y != f) {
prework(y, x), siz[x] += siz[y];
if (siz[wson[x]] < siz[y]) {
if (x == root) swson = wson[x];
wson[x] = y;
} else if (x == root && siz[y] > siz[swson])
swson = y;
}
} int ans1[N], ans2[N], ans3[N], cutSiz;
void calc1(int x, int& cutSiz) {
if (wson[x]) calc1(wson[x], cutSiz);
while (cutSiz && cutSiz >= n - siz[x] * 2)
ans1[cutSiz--] = x;
}
void calc2(int x, int& cutSiz) {
if (x == root) calc2(swson, cutSiz);
else if (wson[x]) calc2(wson[x], cutSiz);
while (cutSiz && cutSiz >= n - siz[x] * 2)
ans2[cutSiz--] = x;
}
void calc3(int x) {
if (wson[x]) calc3(wson[x]);
for (auto y : adj[x]) if (y != fa[x] && y != wson[x]) calc3(y);
ans3[x] = wson[x] ? ans3[wson[x]] : x;
while (siz[ans3[x]] * 2 < siz[x]) ans3[x] = fa[ans3[x]];
} void clear() {
memset(ans1, 0, sizeof(ans1));
memset(ans2, 0, sizeof(ans2));
memset(ans3, 0, sizeof(ans3)); for (int i = 1; i < N; i++) adj[i].clear();
memset(dep, 0, sizeof(dep));
memset(siz, 0, sizeof(siz));
memset(wson, 0, sizeof(wson));
memset(fa, 0, sizeof(fa));
memset(sid, 0, sizeof(sid));
} void solve() {
std::function<bool(int, int)> check[3] = {
[&](int x, int y) {
return x && siz[wson[x]] * 2 <= siz[y]
&& (siz[y] - siz[x]) * 2 <= siz[y];
},
[&](int x, int y) {
if (x == root) return siz[swson] * 2 <= n - siz[y];
return x && siz[wson[x]] * 2 <= n - siz[y]
&& (n - siz[x] - siz[y]) * 2 <= n - siz[y];
},
[&](int x, int y) {
if (x == root) return siz[wson[x]] * 2 <= n - siz[y];
return x && siz[wson[x]] * 2 <= n - siz[y]
&& (n - siz[x] - siz[y]) * 2 <= n - siz[y];
}
}; long long ans = 0;
for (int i = 1; i <= n; i++) for (auto j : adj[i]) if (i < j) {
int x = i, y = j;
if (dep[x] > dep[y]) std::swap(x, y);
int yc = ans3[y]; ans += yc; if (dep[fa[yc]] >= dep[y] && check[0](fa[yc], y))
ans += fa[yc]; if (sid[y] == wson[root]) {
if (siz[wson[root]] - siz[y] >= siz[swson]) {
ans += root;
} else {
int xc = ans2[siz[y]]; ans += xc;
if (check[1](fa[xc], y)) ans += fa[xc];
}
} else {
int xc = ans1[siz[y]]; ans += xc;
if (check[2](fa[xc], y)) ans += fa[xc];
}
}
printf("%lld\n", ans);
} signed main() {
scanf("%d", &T);
while (T--) {
scanf("%d", &n), clear();
for (int i = 1, u, v; i < n; i++) {
scanf("%d%d", &u, &v);
adj[u].emplace_back(v);
adj[v].emplace_back(u);
} root = 0, findRoot(1, 0);
memset(wson, 0, sizeof(wson)), swson = 0, prework(root, 0);
cutSiz = n; calc1(root, cutSiz);
cutSiz = n, calc2(root, cutSiz);
calc3(root), solve();
}
return 0;
}

【CSP-S 2019】树的重心(重心的性质)的更多相关文章

  1. 上午小测3 T1 括号序列 && luogu P5658 [CSP/S 2019 D1T2] 括号树 题解

    前 言: 一直很想写这道括号树..毕竟是在去年折磨了我4个小时的题.... 上午小测3 T1 括号序列 前言: 原来这题是个dp啊...这几天出了好几道dp,我都没看出来,我竟然折磨菜. 考试的时候先 ...

  2. AcWing:143. 最大异或对(01字典树 + 位运算 + 异或性质)

    在给定的N个整数A1,A2……ANA1,A2……AN中选出两个进行xor(异或)运算,得到的结果最大是多少? 输入格式 第一行输入一个整数N. 第二行输入N个整数A1A1-ANAN. 输出格式 输出一 ...

  3. @CSP模拟2019.10.16 - T3@ 垃圾分类

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 为了保护环境,p6pou建设了一个垃圾分类器. 垃圾分类器是一个 ...

  4. CSP/NOIP 2019 游记

    Day0 打牌 Day1 \(T1\) 没开\(ull\), 不知道有几分 \(T2\) \(N^2\)暴力+链, 没搞出树上做法, \(70\)分 \(T3\) 标准\(10\)分( 感觉今年省一稳 ...

  5. 【置顶】CSP/S 2019退役祭

    标题没错,今年就是我的最后一年了. 才高一啊,真不甘心啊. DAY1(之前的看前几篇博客吧) T1 现在没挂 T2 貌似是树形DP,跑到80000的深度时挂了,于是特判了链的情况,大样例过了,现在没挂 ...

  6. 点分治模板(洛谷P4178 Tree)(树分治,树的重心,容斥原理)

    推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径 ...

  7. BZOJ 3510 - 首都 「 $LCT$ 动态维护树的重心」

    这题 FlashHu 的优化思路值得借鉴 前置引理 树中所有点到某个点的距离和中,到重心的距离和是最小的. 把两棵树通过某一点相连得到一颗新的树,新的树的重心必然在连接原来两棵树重心的路径上. 一棵树 ...

  8. poj3107 Godfather 求树的重心

    Description Last years Chicago was full of gangster fights and strange murders. The chief of the pol ...

  9. 【CodeForces】708 C. Centroids 树的重心

    [题目]C. Centroids [题意]给定一棵树,求每个点能否通过 [ 移动一条边使之仍为树 ] 这一操作成为树的重心.n<=4*10^5. [算法]树的重心 [题解]若树存在双重心,则对于 ...

随机推荐

  1. select模型(二 改进服务端)

    一. int select(int fds,fd_set *readfds,fd_set * writefds,fd_set * exceptfds,struct timeval * timeout) ...

  2. Linux上传递文件到另外一个Linux服务器

    现在的项目由于安全的需要,测试服务器被设置不能直接连接,想要连接的话,只能先登录一个服务器,然后以这个服务器为跳板,去登录另外一台真正的 服务器,即使是测试环境也只能这样操作.只能是相对来说安全一些. ...

  3. 处理Ceph osd的journal的uuid问题

    前言 之前有一篇文章介绍的是,在centos7的jewel下面如果自己做的分区如何处理自动挂载的问题,当时的环境对journal的地方采取的是文件的形式处理的,这样就没有了重启后journal的磁盘偏 ...

  4. 记录一个处理Excel的新插件:Alibaba Easy Excel

    EasyExcel是一个基于Java的简单.省内存的读写Excel的开源项目.在尽可能节约内存的情况下支持读写百M的Excel.github地址:https://github.com/alibaba/ ...

  5. IDA-hook so层方法与java之间的映射关键

    第一步 1.首先用ida打开so文件 第二步 第三步

  6. C#高级编程之特性

    特性定义 MSDN的描述:使用特性,可以有效地将元数据或声明性信息与代码(程序集.类型.方法.属性等)相关联. 将特性与程序实体相关联后,可以在运行时使用反射这项技术查询特性. 参考此处作者的解释 h ...

  7. 阿里四面P7稳了,得亏我会这些Spring面试题,果然大厂都爱问它们

    前言 先说一下本人情况吧,末流985毕业,毕业之后一直在一家不大不小的公司里安稳上班.上半年因为疫情的原因公司调整了工资,我也是随波逐流跟随大家辞了职.辞职之后向阿里.字节这些都投了简历(但是只收到了 ...

  8. 如何用ABBYY FineReader 识别表格

    ABBYY FineReader有着强大的OCR文字识别功能,不但可以将文件转换为文本文档或Word文档,也可以识别PDF文件或者图片上的表格,并且转换为Excel文件. 下面小编就使用ABBYY F ...

  9. 为什么换了电脑安装MindManager提示密钥失效?

    相信很多MindManager用户遇到过这样的问题,不想在原电脑上使用MindManager思维导图软件,想要换电脑安装,但是提示该许可证密钥失效了.下面文章就教大家如何解决这个问题: 我们在Mind ...

  10. 1.Cobaltstrike 安装与简介

    1.Cobaltstrike 安装与简介 一.简介 Cobalt Strike是一款美国Red Team开发的渗透测试神器,常被业界人内称为CS.自去年起, Cobaltstrike升级到3.0版本, ...