【最短路】HDU 1688 Sightseeing
题目大意
给出一个有向图(可能存在重边),求从\(S\)到\(F\)最短路的条数,如果次短路的长度仅比最短路的长度多1,那么再加上次短路的条数。
输入格式
第一行是数据组数\(T\)。
对于魅族数据,第一行是\(n\)和\(m\),表示节点数和边数。
接下来\(m\)行,每行三个整数\(a\),\(b\),\(l\),表示\(a\rightarrow b\)有一条边,长度为\(l\)。
最后两个整数表示\(S\)和\(F\)。
输出格式
对于每组数据输出一个答案\(ans\)。
数据范围
\(2\le n\le 1000,1\le m\le 10000,1\le a,b\le n,1\le l\le 1000,1\le ans\le 10^9\)
样例
2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 13
样例输出
3
2
思路
用Dijkstra更新时分四种情况:
- 新路径比最短路径长度要小,最短路和次短路的长度和次数都要更新。
- 新路径等于最短路的长度,更新最短路的条数。
- 新路径比最短路要长但是比次短路要短,更新次短路的长度和条数。
- 新路径等于次短路径的长度,更新次短路径的条数。
代码
#include<stdio.h>
#include<string.h>
const int maxn=1010;
const int maxm=10010;
const int INF=0x3f3f3f3f;
int g[maxn][maxn],dis[maxn][2],cnt[maxn][2];
bool vis[maxn][2];
int n,m;
struct Edge{
int v,w,to;
} edge[maxm];
int num,head[maxn];
void add(int u,int v,int w){
edge[num].v=v;
edge[num].w=w;
edge[num].to=head[u];
head[u]=num++;
}
void dij(int s){
int now,min,k;
for(int i=1; i<=n; i++){
dis[i][0]=INF;
dis[i][1]=INF;
}
memset(vis,false,sizeof(vis));
cnt[s][0]=1;
dis[s][0]=0;
for(int i=1; i<2*n; i++){
now=-1;
min=INF;
for(int j=1; j<=n; j++)
if(!vis[j][0]&&min>dis[j][0]){
k=0;
min=dis[j][0];
now=j;
}
else if(!vis[j][1]&&min>dis[j][1]){
k=1;
min=dis[j][1];
now=j;
}
if(now==-1)break;
vis[now][k]=1;
for(int j=head[now]; j!=-1; j=edge[j].to){
int v=edge[j].v;
int len=dis[now][k]+edge[j].w;
if(len<dis[v][0]){
dis[v][1]=dis[v][0];
cnt[v][1]=cnt[v][0];
dis[v][0]=len;
cnt[v][0]=cnt[now][k];
}else if(len==dis[v][0]){
cnt[v][0]+=cnt[now][k];
}else if(len<dis[v][1]){
dis[v][1]=len;
cnt[v][1]=cnt[now][k];
}else if(len==dis[v][1])
cnt[v][1]+=cnt[now][k];
}
}
}
int main(){
int T;
scanf("%d",&T);
while(T--){
num=0;
memset(head,-1,sizeof(head));
scanf("%d%d",&n,&m);
int a,b,c,s,f;
for(int i=1; i<=m; i++){
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
scanf("%d%d",&s,&f);
dij(s);
int ans=cnt[f][0];
if(dis[f][1]==dis[f][0]+1)
ans+=cnt[f][1];
printf("%d\n",ans);
}
}
【最短路】HDU 1688 Sightseeing的更多相关文章
- HDU 1688 Sightseeing&HDU 3191 How Many Paths Are There(Dijkstra变形求次短路条数)
Sightseeing Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- HDU 1688 Sightseeing
题目链接:Sightseeing 题意:求最短路和比最短路长度+1的所有路径条数. 附代码:用数组记录最短和次短路径的长度和条数,一次更新,直到没有边可以更新. #include <stdio. ...
- HDU 1688 Sightseeing 【输出最短路+次短路条数】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1688 题目大意:给n个点,m条有向边.再给出起点s, 终点t.求出s到t的最短路条数+次短路条数. 思 ...
- hdu 1688 Sightseeing (最短路径)
Sightseeing Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- poj 3463/hdu 1688 求次短路和最短路个数
http://poj.org/problem?id=3463 http://acm.hdu.edu.cn/showproblem.php?pid=1688 求出最短路的条数比最短路大1的次短路的条数和 ...
- BFS(最短路) HDU 2612 Find a way
题目传送门 /* BFS:和UVA_11624差不多,本题就是分别求两个点到KFC的最短路,然后相加求最小值 */ /***************************************** ...
- 【Dijkstra+邻接表求次短路】POJ Sightseeing 3463
Language: Default Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7766 Ac ...
- 【HDOJ】1688 Sightseeing
Dijkstra求解次短路径,使用cnt和dis数组记录最小.次小的个数和长度.重写更新操作. /* 1688 */ #include <iostream> #include <st ...
- 最短路 HDU 2544
最短路 Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- 通俗理解线性回归(Linear Regression)
线性回归, 最简单的机器学习算法, 当你看完这篇文章, 你就会发现, 线性回归是多么的简单. 首先, 什么是线性回归. 简单的说, 就是在坐标系中有很多点, 线性回归的目的就是找到一条线使得这些点都在 ...
- 微信开发者工具集成GitHub,多人协调开发,上传拉取等
一,准备环境 1,提前安装git环境和GitHub做集成,不做多解释: 1,准备微信项目代码: 2,创建GitHub仓库: 二,创建GitHub仓库 1,创建一个空的GitHub仓库,不要任何文件和不 ...
- 【NOIP2014模拟】高级打字机
题目描述 早苗入手了最新的高级打字机.最新款自然有着与以往不同的功能,那就是它具备撤销功能,厉害吧. 请为这种高级打字机设计一个程序,支持如下3种操作: T x:在文章末尾打下一个小写字母x.(typ ...
- mysql修改默认数据存储路径
1.先关闭mysql服务 可cmd--services.msc进入关闭服务 或cmd命令输入net stop mysql57关闭服务 2.进入C:\ProgramData\MySQL\MySQL Se ...
- [LeetCode]105. 从前序与中序遍历序列构造二叉树(递归)、108. 将有序数组转换为二叉搜索树(递归、二分)
题目 05. 从前序与中序遍历序列构造二叉树 根据一棵树的前序遍历与中序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 题解 使用HashMap记录当前子树根节点在中序遍历中的位置,方便每次 ...
- [LeetCode]438. 找到字符串中所有字母异位词、76. 最小覆盖子串(滑动窗口解决子串问题系列)
题目438. 找到字符串中所有字母异位词 给定一个字符串 s 和一个非空字符串 p,找到 s 中所有是 p 的字母异位词的子串,返回这些子串的起始索引. 说明: 字母异位词指字母相同,但排列不同的字符 ...
- js中数组Array对象的方法sort()的应用
一. sort()方法的介绍 //给一组数据排序 var arrNum = [12,1,9,23,56,100,88,66]; console.log("排序前的数组:"+arrN ...
- subDomainsBrute安装(windows系统)
step1: 安装python2.7(省略) step2: 下载subDomainsBrute 地址: https://github.com/lijiejie/subDomainsBrute 下载 ...
- java并发编程--Synchronized的理解
synchronized实现锁的基础:Java中每一个对象都可以作为锁,具体表现为3种形式. (1)普通同步方法,锁是当前实例对象 (2)静态同步方法,锁是当前类的Class对象 (3)同步方法块,锁 ...
- spark源码分析, 任务提交及序列化
简易基本流程图如下 1. org.apache.spark.scheduler.DAGScheduler#submitMissingTasks 2. => org.apache.spark.sc ...