spring boot:使mybatis访问多个druid数据源(spring boot 2.3.2)
一,为什么要使用多个数据源?
说明:刘宏缔的架构森林是一个专注架构的博客,地址:https://www.cnblogs.com/architectforest
对应的源码可以访问这里获取: https://github.com/liuhongdi/
说明:作者:刘宏缔 邮箱: 371125307@qq.com
二,演示项目的相关信息
1,项目地址:
https://github.com/liuhongdi/multidruid
2,项目功能说明:
访问两个数据库,分别打印出两个库中商品和订单的信息
3,项目结构:如图:

三,配置文件说明:
1,pom.xml
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<exclusions>
<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-logging</artifactId>
</exclusion>
</exclusions>
</dependency> <!--druid begin-->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid-spring-boot-starter</artifactId>
<version>1.1.23</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-log4j2</artifactId>
</dependency>
<dependency>
<groupId>com.lmax</groupId>
<artifactId>disruptor</artifactId>
<version>3.4.2</version>
</dependency>
<!--druid end--> <!--mybatis begin-->
<dependency>
<groupId>org.mybatis.spring.boot</groupId>
<artifactId>mybatis-spring-boot-starter</artifactId>
<version>2.1.3</version>
</dependency>
<!--mybatis end--> <!--mysql begin-->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<scope>runtime</scope>
</dependency>
<!--mysql end-->
说明:因为给druid使用了log4j2日志,为避免冲突,
在spring-boot-starter-web中排除了spring-boot-starter-logging
2,application.properties:
#error
server.error.include-stacktrace=always
#error
logging.level.org.springframework.web=trace # 数据源goodsdb基本配置
spring.datasource.druid.goodsdb.username = root
spring.datasource.druid.goodsdb.password = lhddemo
spring.datasource.druid.goodsdb.driver-class-name = com.mysql.cj.jdbc.Driver
spring.datasource.druid.goodsdb.url = jdbc:mysql://127.0.0.1:3306/store?serverTimezone=UTC
spring.datasource.druid.goodsdb.type = com.alibaba.druid.pool.DruidDataSource
spring.datasource.druid.goodsdb.initialSize = 5
spring.datasource.druid.goodsdb.minIdle = 5
spring.datasource.druid.goodsdb.maxActive = 20
spring.datasource.druid.goodsdb.maxWait = 60000
spring.datasource.druid.goodsdb.timeBetweenEvictionRunsMillis = 60000
spring.datasource.druid.goodsdb.minEvictableIdleTimeMillis = 300000
spring.datasource.druid.goodsdb.validationQuery = SELECT 1 FROM DUAL
spring.datasource.druid.goodsdb.testWhileIdle = true
spring.datasource.druid.goodsdb.testOnBorrow = false
spring.datasource.druid.goodsdb.testOnReturn = false
spring.datasource.druid.goodsdb.poolPreparedStatements = true
# 数据源orderdb基本配置
spring.datasource.druid.orderdb.username = root
spring.datasource.druid.orderdb.password = lhddemo
spring.datasource.druid.orderdb.driver-class-name = com.mysql.cj.jdbc.Driver
spring.datasource.druid.orderdb.url = jdbc:mysql://127.0.0.1:3306/orderdb?serverTimezone=UTC
spring.datasource.druid.orderdb.type = com.alibaba.druid.pool.DruidDataSource
spring.datasource.druid.orderdb.initialSize = 5
spring.datasource.druid.orderdb.minIdle = 5
spring.datasource.druid.orderdb.maxActive = 20
spring.datasource.druid.orderdb.maxWait = 60000
spring.datasource.druid.orderdb.timeBetweenEvictionRunsMillis = 60000
spring.datasource.druid.orderdb.minEvictableIdleTimeMillis = 300000
spring.datasource.druid.orderdb.validationQuery = SELECT 1 FROM DUAL
spring.datasource.druid.orderdb.testWhileIdle = true
spring.datasource.druid.orderdb.testOnBorrow = false
spring.datasource.druid.orderdb.testOnReturn = false
spring.datasource.druid.orderdb.poolPreparedStatements = true # 配置监控统计拦截的filters,去掉后监控界面sql无法统计,'wall'用于防火墙
spring.datasource.druid.filters = stat,wall,log4j2
spring.datasource.druid.maxPoolPreparedStatementPerConnectionSize = 20
spring.datasource.druid.useGlobalDataSourceStat = true
spring.datasource.druid.connectionProperties = druid.stat.mergeSql=true;druid.stat.slowSqlMillis=500 #druid sql firewall monitor
spring.datasource.druid.filter.wall.enabled=true #druid sql monitor
spring.datasource.druid.filter.stat.enabled=true
spring.datasource.druid.filter.stat.log-slow-sql=true
spring.datasource.druid.filter.stat.slow-sql-millis=10000
spring.datasource.druid.filter.stat.merge-sql=true #druid uri monitor
spring.datasource.druid.web-stat-filter.enabled=true
spring.datasource.druid.web-stat-filter.url-pattern=/*
spring.datasource.druid.web-stat-filter.exclusions=*.js,*.gif,*.jpg,*.bmp,*.png,*.css,*.ico,/druid/* #druid session monitor
spring.datasource.druid.web-stat-filter.session-stat-enable=true
spring.datasource.druid.web-stat-filter.profile-enable=true #druid spring monitor
spring.datasource.druid.aop-patterns=com.druid.* #monintor,druid login user config
spring.datasource.druid.stat-view-servlet.enabled=true
spring.datasource.druid.stat-view-servlet.login-username=root
spring.datasource.druid.stat-view-servlet.login-password=root #mybatis
mybatis.mapper-locations=classpath:/mapper/*Mapper.xml
mybatis.type-aliases-package=com.example.demo.mapper
mybatis.configuration.log-impl=org.apache.ibatis.logging.stdout.StdOutImpl
#log
logging.config = classpath:log4j2.xml
3,log4j2.xml
<?xml version="1.0" encoding="UTF-8"?>
<configuration status="OFF">
<appenders>
<Console name="Console" target="SYSTEM_OUT">
<!--只接受程序中DEBUG级别的日志进行处理-->
<ThresholdFilter level="DEBUG" onMatch="ACCEPT" onMismatch="DENY"/>
<PatternLayout pattern="%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] [%file:%line] %-5level %logger{35} - %msg %n"/>
</Console>
<!--处理INFO级别的日志,并把该日志放到logs/info.log文件中-->
<RollingFile name="RollingFileInfo" fileName="./logs/info.log"
filePattern="logs/$${date:yyyy-MM}/info-%d{yyyy-MM-dd}-%i.log.gz">
<Filters>
<ThresholdFilter level="INFO"/>
<ThresholdFilter level="WARN" onMatch="DENY" onMismatch="NEUTRAL"/>
</Filters>
<PatternLayout pattern="%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] [%file:%line] %-5level %logger{35} - %msg %n"/>
<Policies>
<SizeBasedTriggeringPolicy size="500 MB"/>
<TimeBasedTriggeringPolicy/>
</Policies>
</RollingFile>
<!--处理WARN级别的日志,并把该日志放到logs/warn.log文件中-->
<RollingFile name="RollingFileWarn" fileName="./logs/warn.log"
filePattern="logs/$${date:yyyy-MM}/warn-%d{yyyy-MM-dd}-%i.log.gz">
<Filters>
<ThresholdFilter level="WARN"/>
<ThresholdFilter level="ERROR" onMatch="DENY" onMismatch="NEUTRAL"/>
</Filters>
<PatternLayout pattern="%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] [%file:%line] %-5level %logger{35} - %msg %n"/>
<Policies>
<SizeBasedTriggeringPolicy size="500 MB"/>
<TimeBasedTriggeringPolicy/>
</Policies>
</RollingFile>
<!--处理error级别的日志,并把该日志放到logs/error.log文件中-->
<RollingFile name="RollingFileError" fileName="./logs/error.log"
filePattern="logs/$${date:yyyy-MM}/error-%d{yyyy-MM-dd}-%i.log.gz">
<ThresholdFilter level="ERROR"/>
<PatternLayout pattern="%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] [%file:%line] %-5level %logger{35} - %msg %n"/>
<Policies>
<SizeBasedTriggeringPolicy size="500 MB"/>
<TimeBasedTriggeringPolicy/>
</Policies>
</RollingFile>
<!--druid的日志记录追加器-->
<RollingFile name="druidSqlRollingFile" fileName="./logs/druid-sql.log"
filePattern="logs/$${date:yyyy-MM}/api-%d{yyyy-MM-dd}-%i.log.gz">
<PatternLayout pattern="%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] [%file:%line] %-5level %logger{35} - %msg %n"/>
<Policies>
<SizeBasedTriggeringPolicy size="500 MB"/>
<TimeBasedTriggeringPolicy/>
</Policies>
</RollingFile>
</appenders>
<loggers>
<AsyncRoot level="info">
<appender-ref ref="Console"/>
<appender-ref ref="RollingFileInfo"/>
<appender-ref ref="RollingFileWarn"/>
<appender-ref ref="RollingFileError"/>
</AsyncRoot>
<!--记录druid-sql的记录-->
<AsyncLogger name="druid.sql.Statement" level="debug" additivity="false">
<appender-ref ref="druidSqlRollingFile"/>
</AsyncLogger>
</loggers>
</configuration>
4,数据库的相关业务表:
goods表
CREATE TABLE `goods` (
`goodsId` bigint(11) unsigned NOT NULL AUTO_INCREMENT COMMENT 'id',
`goodsName` varchar(500) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL DEFAULT '' COMMENT 'name',
`subject` varchar(200) NOT NULL DEFAULT '' COMMENT '标题',
`price` decimal(15,2) NOT NULL DEFAULT '0.00' COMMENT '价格',
`stock` int(11) NOT NULL DEFAULT '0' COMMENT 'stock',
PRIMARY KEY (`goodsId`)
) ENGINE=InnoDB AUTO_INCREMENT=0 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci COMMENT='商品表'
goods表中的数据:
INSERT INTO `goods` (`goodsId`, `goodsName`, `subject`, `price`, `stock`) VALUES
(3, '100分电动牙刷', '好用到让你爱上刷牙', '59.00', 96);
order表:
CREATE TABLE `orderinfo` (
`orderId` bigint(11) unsigned NOT NULL AUTO_INCREMENT COMMENT 'id',
`orderSn` varchar(100) NOT NULL DEFAULT '' COMMENT '编号',
`orderTime` timestamp NOT NULL DEFAULT '1971-01-01 00:00:01' COMMENT '下单时间',
`orderStatus` tinyint(4) NOT NULL DEFAULT '0' COMMENT '状态:0,未支付,1,已支付,2,已发货,3,已退货,4,已过期',
`userId` int(12) NOT NULL DEFAULT '0' COMMENT '用户id',
`price` decimal(10,0) NOT NULL DEFAULT '0' COMMENT '价格',
`addressId` int(12) NOT NULL DEFAULT '0' COMMENT '地址',
PRIMARY KEY (`orderId`),
UNIQUE KEY `orderSn` (`orderSn`)
) ENGINE=InnoDB AUTO_INCREMENT=0 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci COMMENT='订单表'
order表中的数据:
INSERT INTO `orderinfo` (`orderId`, `orderSn`, `orderTime`, `orderStatus`, `userId`, `price`, `addressId`) VALUES
(77, '20200814171411660', '2020-08-14 09:14:12', 0, 8, '100', 0);
四,java代码说明:
1,GoodsdbSourceConfig.java
@Configuration
@MapperScan(basePackages = "com.multidruid.demo.mapper.goodsdb", sqlSessionTemplateRef = "goodsdbSqlSessionTemplate")
public class GoodsdbSourceConfig { @Bean
@Primary
@ConfigurationProperties("spring.datasource.druid.goodsdb")
public DataSource goodsdbDataSource() {
return DruidDataSourceBuilder.create().build();
} @Bean
@Primary
public SqlSessionFactory goodsdbSqlSessionFactory(@Qualifier("goodsdbDataSource") DataSource dataSource) throws Exception {
SqlSessionFactoryBean bean = new SqlSessionFactoryBean();
bean.setDataSource(dataSource);
bean.setMapperLocations(new PathMatchingResourcePatternResolver().getResources("classpath:mapper/goodsdb/*.xml"));
return bean.getObject();
} @Bean
@Primary
public DataSourceTransactionManager goodsdbTransactionManager(@Qualifier("goodsdbDataSource") DataSource dataSource) {
return new DataSourceTransactionManager(dataSource);
} @Bean
@Primary
public SqlSessionTemplate goodsdbSqlSessionTemplate(@Qualifier("goodsdbSqlSessionFactory") SqlSessionFactory sqlSessionFactory) throws Exception {
return new SqlSessionTemplate(sqlSessionFactory);
}
}
说明:用basePackages指定mapper程序所在目录,
bean.setMapperLocations指定mapper的xml文件所在目录
2,OrderdbSourceConfig.java
@Configuration
@MapperScan(basePackages = "com.multidruid.demo.mapper.orderdb", sqlSessionTemplateRef = "orderdbSqlSessionTemplate")
public class OrderdbSourceConfig { @Bean
@ConfigurationProperties(prefix = "spring.datasource.druid.orderdb")
public DataSource orderdbDataSource() {
return DruidDataSourceBuilder.create().build();
} @Bean
public SqlSessionFactory orderdbSqlSessionFactory(@Qualifier("orderdbDataSource") DataSource dataSource) throws Exception {
SqlSessionFactoryBean bean = new SqlSessionFactoryBean();
bean.setDataSource(dataSource);
bean.setMapperLocations(new PathMatchingResourcePatternResolver().getResources("classpath:mapper/orderdb/*.xml"));
return bean.getObject();
} @Bean
public DataSourceTransactionManager orderdbTransactionManager(@Qualifier("orderdbDataSource") DataSource dataSource) {
return new DataSourceTransactionManager(dataSource);
} @Bean
public SqlSessionTemplate orderdbSqlSessionTemplate(@Qualifier("orderdbSqlSessionFactory") SqlSessionFactory sqlSessionFactory) throws Exception {
return new SqlSessionTemplate(sqlSessionFactory);
}
}
说明:用basePackages指定mapper程序所在目录,
bean.setMapperLocations指定mapper的xml文件所在目录
主要是把两个数据源对应的mapper接口程序和mapper的xml文件隔离开
3,GoodsMapper.java
@Repository
@Mapper
public interface GoodsMapper {
Goods selectOneGoods(Long goodsId);
}
4,OrderMapper.java
@Repository
@Mapper
public interface OrderMapper {
Order selectOneOrder(Long orderId);
}
5,GoodsMapper.xml
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper
PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
"http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.multidruid.demo.mapper.goodsdb.GoodsMapper">
<select id="selectOneGoods" parameterType="long" resultType="com.multidruid.demo.pojo.Goods">
select * from goods where goodsId=#{goodsId}
</select>
</mapper>
6,OrderMapper.xml
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper
PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
"http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.multidruid.demo.mapper.orderdb.OrderMapper">
<select id="selectOneOrder" parameterType="long" resultType="com.multidruid.demo.pojo.Order">
select * from orderinfo where orderId=#{orderId}
</select>
</mapper>
7,HomeController.java
@Controller
@RequestMapping("/home")
public class HomeController { @Resource
private GoodsMapper goodsMapper; @Resource
private OrderMapper orderMapper; //商品详情 参数:商品id
@GetMapping("/goodsinfo")
@ResponseBody
public Goods goodsInfo(@RequestParam(value="goodsid",required = true,defaultValue = "0") Long goodsId) {
Goods goods = goodsMapper.selectOneGoods(goodsId);
return goods;
} //订单详情 参数:订单id
@GetMapping("/orderinfo")
@ResponseBody
public Order orderInfo(@RequestParam(value="orderid",required = true,defaultValue = "0") Long orderId) {
Order order = orderMapper.selectOneOrder(orderId);
return order;
}
}
8,Goods/Order 两个pojo类很简单,不列出了,大家可以访问github查看
五,测试效果:
1,查询商品信息,访问:
http://127.0.0.1:8080/home/goodsinfo?goodsid=3
返回:
{"goodsId":3,"goodsName":"100分电动牙刷","subject":"好用到让你爱上刷牙","price":59.00,"stock":96}
2,查询订单信息,访问:
http://127.0.0.1:8080/home/orderinfo?orderid=77
返回:
{"orderId":77,"orderSn":"20200814171411660","orderTime":"2020-08-14 17:14:12","orderStatus":0,"userId":8,"price":100}
3,查看druid监控页面中连接到的数据源

可以看到已连接到的两个数据源
六,查看spring boot的版本
. ____ _ __ _ _
/\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
\\/ ___)| |_)| | | | | || (_| | ) ) ) )
' |____| .__|_| |_|_| |_\__, | / / / /
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v2.3.2.RELEASE)
spring boot:使mybatis访问多个druid数据源(spring boot 2.3.2)的更多相关文章
- spring boot:使用mybatis访问多个mysql数据源/查看Hikari连接池的统计信息(spring boot 2.3.1)
一,为什么要访问多个mysql数据源? 实际的生产环境中,我们的数据并不会总放在一个数据库, 例如:业务数据库:存放了用户/商品/订单 统计数据库:按年.月.日的针对用户.商品.订单的统计表 因为统计 ...
- 小D课堂-SpringBoot 2.x微信支付在线教育网站项目实战_3-1.整合Mybatis访问数据库和阿里巴巴数据源
笔记 1.整合Mybatis访问数据库和阿里巴巴数据源 简介:整合mysql 加入mybatis依赖,和加入alibaba druid数据源 1.加入依赖(可以用 http://start.s ...
- spring boot:配置shardingsphere(sharding jdbc)使用druid数据源(druid 1.1.23 / sharding-jdbc 4.1.1 / mybatis / spring boot 2.3.3)
一,为什么要使用druid数据源? 1,druid的优点 Druid是阿里巴巴开发的号称为监控而生的数据库连接池 它的优点包括: 可以监控数据库访问性能 SQL执行日志 SQL防火墙 但spring ...
- Spring boot教程mybatis访问MySQL的尝试
Windows 10家庭中文版,Eclipse,Java 1.8,spring boot 2.1.0,mybatis-spring-boot-starter 1.3.2,com.github.page ...
- struts2与spring整合问题,访问struts2链接时,spring会负责创建Action
每次访问一次链接,spring会创建一个对象,并将链接所带的参数注入到Action的变量中(如何做到的呐) 因为: struts2的action每次访问都重新创建一个对象,那spring的ioc是怎么 ...
- spring boot集成mybatis(1)
Spring Boot 集成教程 Spring Boot 介绍 Spring Boot 开发环境搭建(Eclipse) Spring Boot Hello World (restful接口)例子 sp ...
- spring boot集成mybatis(2) - 使用pagehelper实现分页
Spring Boot 集成教程 Spring Boot 介绍 Spring Boot 开发环境搭建(Eclipse) Spring Boot Hello World (restful接口)例子 sp ...
- spring boot集成mybatis(3) - mybatis generator 配置
Spring Boot 集成教程 Spring Boot 介绍 Spring Boot 开发环境搭建(Eclipse) Spring Boot Hello World (restful接口)例子 sp ...
- spring boot配置mybatis和事务管理
spring boot配置mybatis和事务管理 一.spring boot与mybatis的配置 1.首先,spring boot 配置mybatis需要的全部依赖如下: <!-- Spri ...
随机推荐
- Httprunner框架学习
前言 HttpRunner 是一款面向 HTTP(S) 协议的通用测试框架,只需编写维护一份 YAML/JSON 脚本,即可实现自动化测试. 官方文档:https://docs.httprunner. ...
- 《ASP.NET Core项目开发实战入门》带你走进ASP.NET Core开发
<ASP.NET Core项目开发实战入门>从基础到实际项目开发部署带你走进ASP.NET Core开发. ASP.NET Core项目开发实战入门是基于ASP.NET Core 3.1 ...
- CSS -- 盒子模型之边框、内边距、外边距
一.使用border为盒子添加边框 盒子模型的边框就是围绕着内容及补白的线,这条线你可以设置它的粗细.样式和颜色(边框三个属性). 1.border-style(边框样式)常见样式有: dashed( ...
- WeihanLi.Npoi 1.10.0 更新日志
WeihanLi.Npoi 1.10.0 更新日志 Intro 上周有个网友希望能够导入Excel时提供一个 EndRowIndex 来自己控制结束行和根据字段过滤的,周末找时间做了一下这个 feat ...
- python 中简单的输出语句
1 python 中简单的输出语句 #coding:utf-8#输出的是整数,得到的也是整数,用raw_inputusername=raw_input('请输入用户名:')#输出的是整数或者字符串,得 ...
- 容器云平台No.6~企业级分布式存储Ceph
简介 ceph作为一个统一的分布式存储系统,提供了高性能,高可用性,高扩展性.ceph的统一体现在其可以提供文件系统.块存储.对象存储,在云环境中,通常采用ceph作为后端存储来保证数据的高可用性. ...
- gateway(二、过滤器)
过滤器其实是路由转发+过滤器 自定义过滤器 首先创建一个类继承下边两个类,实现过滤器 然后在启动项中通过创建bean的方式创建路由器 @Componentpublic class TimeFilter ...
- jdbc原理与步骤
jdbc原理 1.加载JDBC驱动,并将其注册到DriverManager 2.建立数据库连接,获取connection对象 3.建立Statement对象或PreparedStatement对象 4 ...
- 2020 Java开发者数据分析:中国已成为 Java 第一大国
最近知名开发工具供应商Jetbrains在Java 25周年之际,对开发群体做了一次有意思的数据分析. 全文内容可见:https://blog.jetbrains.com/idea/2020/09/a ...
- Python-设置文件缓冲类型
案例: 将文件内容写入到硬件设备时候,使用系统调用,这类IO操作时间长,为了减小IO操作,通常会使用缓冲区(有足够多数据才能调用). 文件缓冲行为分为:全缓冲,行缓冲,无缓冲 如何解决? open(' ...