取$M=\sqrt{300000}$。

设$g[i]$表示程序员的$\bmod i$最小的值。

若$Y<M$,那么可以在$O(M)$时间内完成对所有$g[i]$的修改,$O(1)$时间内完成查询。

若$Y\geq M$,那么枚举$Y$的倍数,等价于查询一段区间内的最小值,可以通过分块做到$O(M)$修改,$O(1)$查询。

因为倍数不超过$M$个,所以询问的总复杂度为$O(M)$。

所以总时间复杂度为$O(n\sqrt{300000})$。

#include<cstdio>
const int N=300010,M=550;
int n=300000,m=n/M,q,i,x,pos[N],st[M],f[N],tag[M],g[M];char op[5];
inline void up(int&a,int b){if(a>b)a=b;}
inline void add(int x){
for(int i=1;i<M;i++)up(g[i],x%i);
for(int i=st[pos[x]];i<=x;i++)up(f[i],x);
for(int i=pos[x]-1;~i;i--)up(tag[i],x);
}
inline int ask(int x){
if(!x)x++;
int t=f[x];
up(t,tag[pos[x]]);
return t;
}
inline int query(int x){
if(x<M)return g[x];
int t=N;
for(int i=0,j=x;i<=n;i=j,j+=x){
if(j>n)j=n+1;
int y=ask(i);
if(y<j)up(t,y-i);
}
return t;
}
int main(){
for(i=1;i<=n;i++)pos[i]=i/M;
for(i=n;i;i--)st[pos[i]]=i;
for(i=1;i<=n;i++)f[i]=N;
for(i=0;i<=m;i++)tag[i]=N;
for(i=1;i<M;i++)g[i]=N;
scanf("%d",&q);
while(q--){
scanf("%s%d",op,&x);
if(op[0]=='A')add(x);else printf("%d\n",query(x));
}
return 0;
}

  

BZOJ4320 : ShangHai2006 Homework的更多相关文章

  1. [BZOJ4320][ShangHai2006]Homework(根号分治+并查集)

    对于<=sqrt(300000)的询问,对每个模数直接记录结果,每次加入新数时暴力更新每个模数的结果. 对于>sqrt(300000)的询问,枚举倍数,每次查询大于等于这个倍数的最小数是多 ...

  2. BZOJ4320 ShangHai2006 Homework(分块+并查集)

    考虑根号分块.对于<√3e5的模数,每加入一个数就暴力更新最小值:对于>√3e5的模数,由于最多被分成√3e5块,查询时对每一块找最小值,这用一些正常的DS显然可以做到log,但不太跑得过 ...

  3. 【BZOJ4320】ShangHai2006 Homework 分段+并查集

    [BZOJ4320]ShangHai2006 Homework Description   1:在人物集合 S 中加入一个新的程序员,其代号为 X,保证 X 在当前集合中不存在.    2:在当前的人 ...

  4. 【bzoj4320】【ShangHai2006 Homework】【并查集+离线处理】

    ShangHai2006 Homework Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 918  Solved: 460[Submit][Statu ...

  5. bzoj 4320: ShangHai2006 Homework

    4320: ShangHai2006 Homework Time Limit: 10 Sec Memory Limit: 128 MB Description 1:在人物集合 S 中加入一个新的程序员 ...

  6. 4320: ShangHai2006 Homework

    4320: ShangHai2006 Homework 链接 分析: 分块.对权值模数进行分块,模数小于$\sqrt V$的($V$为权值上界),暴力处理. 模数大于$\sqrt V$的,设模数是k, ...

  7. 【bzoj4320】ShangHai2006 Homework

    若Y小于等于sqrt(300000),暴力,对所有的插入的数都更新mn[i]. 若Y大于sqrt(300000),枚举kY,用并查集维护>=i的第一个数,这样只支持删除操作是O(1),然后倒着枚 ...

  8. BZOJ.4320.[ShangHai2006]Homework(根号分治 分块)

    BZOJ \(\mathbb{mod}\)一个数\(y\)的最小值,可以考虑枚举剩余系,也就是枚举区间\([0,y),[y,2y),[2y,3y)...\)中的最小值(求后缀最小值也一样)更新答案,复 ...

  9. bzoj 4320: ShangHai2006 Homework【分块】

    按根号300000=m分情况讨论 查询是,当x小于等于m,那么可以暴力记录直接出解:否则,用分块维护区间值,查询的时候以x为步长跳根号m次取最小值即可 还有一种并查集方法,来自https://www. ...

随机推荐

  1. WeakReference(弱引用)

    原地址:http://www.cnblogs.com/bayonetxxx/archive/2009/06/02/1494728.html 我们平常用的都是对象的强引用,如果有强引用存在,GC是不会回 ...

  2. dex和odex相互转换

    一.dex和odex dex是安卓dalvik虚拟机的可执行文件,可以在导出的apk文件里用解压缩软件直接打开.odex是经过优化过的dex.odex一种是从apk程序中提取出来的,与apk文件存放在 ...

  3. python-twisted系列(1)

    前言: 这不是一个入门教程.而是知识点的梳理. 开胃图: 这是一个TCP server的“交互图”. reactor 它是Twisted事件处理的核心.包括一些处理网络通讯,线程和事件分派的接口. 一 ...

  4. 【云计算】docker的小知识,帮你更深入理解容器技术

    关于docker的15个小tip   1. 获取最近运行容器的id 这是我们经常会用到的一个操作,按照官方示例,你可以这样做(环境ubuntu): $ ID=$(docker run ubuntu e ...

  5. c#ASP.NET中页面传值共有这么几种方式

    一.目前在ASP.NET中页面传值共有这么几种方式: 1.Response.Redirect("http://www.hao123.com",false); 目标页面和原页面可以在 ...

  6. linux下emacs配置文件

    1:安装.在ubuntu下使用命令 sudo apt-get install emacs,即可,我使用的是ubuntu的10.04的版本,在里面使用了据说是163的2个源. 1.1:如何更新快速的源, ...

  7. google登录不了解决喽

    大家好,google 每到这个时候就登录不聊了.... 解法: 修改host 文件 下载地址点我

  8. redhad借用CentOs yum 安装

    RedHat linux 默认是安装了yum软件的,但是由于激活认证的原因让redhat无法直接进行yum安装一些软件,如果我们需要在redhat下直接yum安装软件,我们只用把yum的源修改成Cen ...

  9. Myeclipse中把java代码导成UML类图

    Myeclipse中把java代码导成UML类图 1.右键点击项目名称,选择New-------àUML2 Model 2.给类图命名 3.导成类图 1)如果要把整个项目导成类图,则把整个项目拖到类图 ...

  10. svn利用钩子post-commit自动更新到线上测试服务器(测试中未验证)

    创建一个新的版本库: [root@centos03 svn]# pwd /home/svn [root@centos03 svn]# svnadmin create webtest [root@cen ...