如果S==T,那么答案为0。

如果S与T不连通,那么答案为inf。

否则,S到T的最短路径上至少有一条边。

求出以S为源点的最短路图,是个DAG,随便抓一条S到T的最短路,记为P。

设dpS[x]表示在这个图上,能到达x点的离S最近的在P上的点,可以通过拓扑排序+DP求出。

然后求出以T为源点的最短路图,在T的最短路图里找到P。

设dpT[x]表示在这个图上,能到达x点的离T最近的在P上的点,同样可以通过拓扑排序+DP求出。

然后把P路径上的边按S到T的方向,从1开始标号。

对于一条边,如果不在P上,那么答案显然为S到T的最短路。

否则,对于一条不在P上的边长为w的有向边x->y,P中dpS[x]到dpT[y]-1之间的边删掉后,均可以用disS[x]+disT[y]+w代替。

用线段树维护即可,时间复杂度$O((n+m)\log n+q)$。

#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
typedef pair<ll,int> P;
const int N=200010;
const ll inf=1LL<<60;
int n,m,que,S,T,i,x,y,g[N],v[N<<1],w[N<<1],nxt[N<<1],ed;
int G[N],V[N],NXT[N],pre[N],d[N];
int path[N],cnt,id[N],fs[N],ft[N];
int q[N],h,t;
ll ds[N],dt[N];
struct E{int x,y,z;}e[N];
priority_queue<P,vector<P>,greater<P> >Q;
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
inline void add(int x,int y,int z){v[++ed]=y;w[ed]=z;nxt[ed]=g[x];g[x]=ed;}
inline void ADD(int x,int y){pre[y]=x;d[y]++;V[++ed]=y;NXT[ed]=G[x];G[x]=ed;}
inline int onpath(int x,int y){
if(!id[x]||!id[y])return 0;
if(id[x]+1==id[y])return id[x];
if(id[y]+1==id[x])return id[y];
return 0;
}
ll val[525000],ans[N];
void build(int x,int a,int b){
val[x]=inf;
if(a==b)return;
int mid=(a+b)>>1;
build(x<<1,a,mid),build(x<<1|1,mid+1,b);
}
void change(int x,int a,int b,int c,int d,ll p){
if(c<=a&&b<=d){val[x]=min(val[x],p);return;}
int mid=(a+b)>>1;
if(c<=mid)change(x<<1,a,mid,c,d,p);
if(d>mid)change(x<<1|1,mid+1,b,c,d,p);
}
void dfs(int x,int a,int b){
if(a==b){ans[a]=val[x];return;}
int mid=(a+b)>>1;
val[x<<1]=min(val[x<<1],val[x]),dfs(x<<1,a,mid);
val[x<<1|1]=min(val[x<<1|1],val[x]),dfs(x<<1|1,mid+1,b);
}
int main(){
read(n),read(m);
for(i=1;i<=m;i++){
read(e[i].x),read(e[i].y),read(e[i].z);
add(e[i].x,e[i].y,e[i].z);
add(e[i].y,e[i].x,e[i].z);
}
read(S),read(T);
if(S==T){
for(read(que);que--;puts("0"));
return 0;
}
for(i=1;i<=n;i++)ds[i]=inf;Q.push(P(ds[S]=0,S));
while(!Q.empty()){
P t=Q.top();Q.pop();
if(ds[t.second]<t.first)continue;
for(i=g[x=t.second];i;i=nxt[i])if(ds[x]+w[i]<ds[v[i]])Q.push(P(ds[v[i]]=ds[x]+w[i],v[i]));
}
if(ds[T]==inf){
for(read(que);que--;puts("Infinity"));
return 0;
}
for(ed=0,i=1;i<=m;i++){
if(ds[e[i].x]+e[i].z==ds[e[i].y])ADD(e[i].x,e[i].y);
if(ds[e[i].y]+e[i].z==ds[e[i].x])ADD(e[i].y,e[i].x);
}
for(i=T;i!=S;i=pre[i])path[++cnt]=i;path[++cnt]=S;
for(i=1;i<cnt-i+1;i++)swap(path[i],path[cnt-i+1]);
for(i=1;i<=cnt;i++)id[path[i]]=i;
for(i=1;i<=n;i++)fs[i]=N;
for(i=1;i<=cnt;i++)fs[path[i]]=i;
q[h=t=1]=S;
while(h<=t)for(i=G[x=q[h++]];i;i=NXT[i]){
if(!id[V[i]])fs[V[i]]=min(fs[V[i]],fs[x]);
if(!(--d[V[i]]))q[++t]=V[i];
}
for(i=1;i<=n;i++)dt[i]=inf;Q.push(P(dt[T]=0,T));
while(!Q.empty()){
P t=Q.top();Q.pop();
if(dt[t.second]<t.first)continue;
for(i=g[x=t.second];i;i=nxt[i])if(dt[x]+w[i]<dt[v[i]])Q.push(P(dt[v[i]]=dt[x]+w[i],v[i]));
}
for(ed=0,i=1;i<=n;i++)G[i]=d[i]=0;
for(i=1;i<=m;i++){
if(dt[e[i].x]+e[i].z==dt[e[i].y])ADD(e[i].x,e[i].y);
if(dt[e[i].y]+e[i].z==dt[e[i].x])ADD(e[i].y,e[i].x);
}
for(i=1;i<=cnt;i++)ft[path[i]]=i;
q[h=t=1]=T;
while(h<=t)for(i=G[x=q[h++]];i;i=NXT[i]){
if(!id[V[i]])ft[V[i]]=max(ft[V[i]],ft[x]);
if(!(--d[V[i]]))q[++t]=V[i];
}
build(1,1,cnt-1);
for(i=1;i<=m;i++){
x=e[i].x,y=e[i].y;
if(onpath(x,y))continue;
if(fs[x]<N&&ft[y]&&fs[x]<ft[y])change(1,1,cnt-1,fs[x],ft[y]-1,ds[x]+dt[y]+e[i].z);
if(fs[y]<N&&ft[x]&&fs[y]<ft[x])change(1,1,cnt-1,fs[y],ft[x]-1,ds[y]+dt[x]+e[i].z);
}
dfs(1,1,cnt-1);
read(que);
while(que--){
read(x),read(y),i=onpath(x,y);
if(!i){printf("%lld\n",ds[T]);continue;}
if(ans[i]<inf)printf("%lld\n",ans[i]);else puts("Infinity");
}
return 0;
}

  

BZOJ2725 : [Violet 6]故乡的梦的更多相关文章

  1. BZOJ 2725: [Violet 6]故乡的梦 最短路+线段树

    2725: [Violet 6]故乡的梦 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 678  Solved: 204[Submit][Status ...

  2. [原博客] BZOJ 2725 : [Violet 6]故乡的梦

    这个题在bzoj上好像是个权限题,想做的可以去Vani的博客下载测试数据.这里有题面. 简单叙述一下题意:给你一个n个点.m条边的带权无向图,S点和T点,询问Q次删一条给定的边的S-T最短路. 其中  ...

  3. BZOJ 2725 [Violet 6]故乡的梦 线段树+最短路树

    \(\color{#0066ff}{ 题目描述 }\) \(\color{#0066ff}{输入格式}\) \(\color{#0066ff}{输出格式}\) \(\color{#0066ff}{输入 ...

  4. BZOJ 2725: [Violet 6]故乡的梦

    求出最短路径树,对于一个询问(x,y) 若不在树上S->T的链上,则答案不变,若在链上,考虑用一条非树边替换这条边,这条非树边必须跨越x->y这条边,线段树维护区间最小值 #include ...

  5. 【BZOJ-2725】故乡的梦 Dijsktra + Tarjan + Dinic + BFS + 堆

    2725: [Violet 6]故乡的梦 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 502  Solved: 173[Submit][Status ...

  6. [violet6] 故乡的梦

    题目 描述 不知每日疲于在城市的水泥森林里奔波的你会不会有时也曾向往过乡村的生活.你会不会幻想过,在夏日一个静谧的午后,你沉睡于乡间路边的树荫里,一片叶子落在了你的肩上, 而你正做着一个悠长的梦,一个 ...

  7. bzoj violet系列 (2708~2725)

    cbh大爷说:写博客不能弃坑. orz cbh 那我就来更新博客了. violet这个系列的题好神啊……出题人好劲啊…… ……怎么最近都在理性愉悦啊…… 另外bzoj400题纪念~ 2708: [Vi ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. BZOJ 5395--[Ynoi2016]谁的梦(STL&容斥)

    5395: [Ynoi2016]谁的梦 Time Limit: 80 Sec  Memory Limit: 128 MBSubmit: 22  Solved: 7[Submit][Status][Di ...

随机推荐

  1. 翻译:非常详细易懂的法线贴图(Normal Mapping)

    翻译:非常详细易懂的法线贴图(Normal Mapping) 本文翻译自: Shaders » Lesson 6: Normal Mapping 作者: Matt DesLauriers 译者: Fr ...

  2. 在Android上使用fontAwesome

    再也不用做那些讨厌的小图标了! 从网上找了些资料,总结下在android上使用fontAwesome的方法. 1.到官网上下载资源包,找到其中的字体文件fontawesome-webfont.ttf, ...

  3. Oracle的锁表与解锁

    Oracle的锁表与解锁 SELECT /*+ rule */ s.username, decode(l.type,'TM','TABLE LOCK', 'TX','ROW LOCK', NULL) ...

  4. yum_rpm(利用dvd建立本地yum库)

    #wget "http://mirrorlist.centos.org/?release=6&arch=x86_64&repo=os" 建立起了index.html ...

  5. centos 截图命令 screenshot

    [root@ok ~]# gnome-screenshot#全屏截图 [root@ok ~]# gnome-screenshot --interactive#自定义截图

  6. tty相关内容

    参考文章: http://blog.csdn.net/goodluckwhh/article/details/13368279

  7. 使用HttpClient操作ASP.NET Web API 2.1增删改查

    使用NuGet包安装Microsoft ASP.NET Web API 2.1 Client Libraries, 调用方式代码如下: HttpClient client = new HttpClie ...

  8. 微信支付v3发布到iis时的证书问题(转)

    本文纯粹转载(原地址:微信支付v3发布到iis时的证书问题 ) 一开始报“出现了内部错误” 解决方法是 方法一 var cer = new X509Certificate(certpath, pass ...

  9. [原]ASP.NET 数据库访问通用工具

    在工作中,有很多项目已上线后,很多项目的数据库服务器都不会对外开放的,外网想直接访问客户数据库服务器时,可能会出现困难. 这时就需要一个可以查询,更新数据库操作的页面了: 本来用sql语句直接操作数据 ...

  10. C#学习笔记——Show()与ShowDialog()的区别

    用Show()调用的窗体不会返回任何值,在使用form.Show()显示form以后,会马上继续执行form.Show()后面的语句.而用ShowDialog()调用的窗体会返回一个DialogRes ...