前言

今天第一次使用MarkDown的形式发博客. 准备记录一下自己对Guava Cache的认识及项目中的实际使用经验.

一: 什么是Guava

Guava工程包含了若干被Google的 Java项目广泛依赖 的核心库,例如:集合 [collections] 、缓存 [caching] 、原生类型支持 [primitives support] 、并发库 [concurrency libraries] 、通用注解 [common annotations] 、字符串处理 [string processing] 、I/O 等等。 所有这些工具每天都在被Google的工程师应用在产品服务中。

//Guava Cache的使用
LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.expireAfterAccess(10, TimeUnit.MINUTES)
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) { // no checked exception
return createExpensiveGraph(key);
}
}); ...
return graphs.getUnchecked(key);

二: 使用场景

当我们使用一种新工具的时候 我们总要先弄清楚它到底适用于什么样的场景.

  • 你愿意消耗一些内存空间来提升速度。
  • 你预料到某些键会被查询一次以上。
  • 缓存中存放的数据总量不会超出内存容量。(Guava Cache是单个应用运行时的本地缓存。它不把数据存放到文件或外部服务器。如果这不符合你的需求,请尝试Memcached这类工具)

如果你的场景符合上述的每一条,Guava Cache就适合你。

三: 核心类图

四: 使用实例

前面说了这么多, 都不如如何使用来的实在. 现在直接贴出来使用的实例, 具体实现的逻辑大家可以看下源码, 这里也会有一些实际的讲解.

在pom文件中引入Guava Cache的坐标:

<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
</dependency>

下面拿我们实际项目中使用的一个GuavaCache来举例:

public abstract class BaseCacheService<K,V> {
private LoadingCache<K,V> cache; public BaseCacheService(){
cache = CacheBuilder.newBuilder()
.expireAfterWrite(30, TimeUnit.MINUTES)
.build(new CacheLoader<K, V>() {
@Override
public V load(K k) throws Exception {
return loadData(k);
}
});
} public BaseCacheService(long duration){
cache = CacheBuilder.newBuilder()
.expireAfterWrite(duration, TimeUnit.MINUTES)
.build(new CacheLoader<K, V>() {
@Override
public V load(K k) throws Exception {
return loadData(k);
}
});
} protected abstract V loadData(K k); public V getCache(K param){
return cache.getUnchecked(param);
} //更新缓存中数据
public void refresh(K k){
cache.refresh(k);
}
}

这里我是抽象出来了一个BaseCacheService, 当我们使用时则可以继承这个抽象类:

如果我们第一次请求, 那么这会执行这里面的load方法去数据库中查询相应的值, 当第二次请求时这会从缓存中直接返回了.

@Service
public class MaterialInfoCacheService extends BaseCacheService<Long, List<MaterialInfoDto>> { @Override
protected List<MaterialInfoDto> loadData(Long key) {
//具体的查询数据库得到数据的逻辑. return materialInfoDtos;
}
}

这里面有关于缓存的回收(expireAfterWrite), 有关于缓存的刷新(refresh)等, 这些东西会一一来介绍.

缓存的回收:

1, 基于容量的回收(size-based eviction)

如果要规定缓存项的数目不超过固定值,只需使用CacheBuilder.maximumSize(long)。缓存将尝试回收最近没有使用或总体上很少使用的缓存项。——警告:在缓存项的数目达到限定值之前,缓存就可能进行回收操作——通常来说,这种情况发生在缓存项的数目逼近限定值时。

另外,不同的缓存项有不同的“权重”(weights)——例如,如果你的缓存值,占据完全不同的内存空间,你可以使用CacheBuilder.weigher(Weigher)指定一个权重函数,并且用CacheBuilder.maximumWeight(long)指定最大总重。在权重限定场景中,除了要注意回收也是在重量逼近限定值时就进行了,还要知道重量是在缓存创建时计算的,因此要考虑重量计算的复杂度。

LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.maximumWeight(100000)
.weigher(new Weigher<Key, Graph>() {
public int weigh(Key k, Graph g) {
return g.vertices().size();
}
})
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) { // no checked exception
return createExpensiveGraph(key);
}
});

2, 定时回收(Timed Eviction)

CacheBuilder提供两种定时回收的方法:

  • expireAfterAccess(long, TimeUnit):缓存项在给定时间内没有被读/写访问,则回收。请注意这种缓存的回收顺序和基于大小回收一样。
  • expireAfterWrite(long, TimeUnit):缓存项在给定时间内没有被写访问(创建或覆盖),则回收。如果认为缓存数据总是在固定时候后变得陈旧不可用,这种回收方式是可取的。

3, 基于引用的回收(Reference-based Eviction)

通过使用弱引用的键、或弱引用的值、或软引用的值,Guava Cache可以把缓存设置为允许垃圾回收:

  • CacheBuilder.weakKeys():使用弱引用存储键。当键没有其它(强或软)引用时,缓存项可以被垃圾回收。因为垃圾回收仅依赖恒等式(),使用弱引用键的缓存用而不是equals比较键。
  • CacheBuilder.weakValues():使用弱引用存储值。当值没有其它(强或软)引用时,缓存项可以被垃圾回收。因为垃圾回收仅依赖恒等式(),使用弱引用值的缓存用而不是equals比较值。
  • CacheBuilder.softValues():使用软引用存储值。软引用只有在响应内存需要时,才按照全局最近最少使用的顺序回收。考虑到使用软引用的性能影响,我们通常建议使用更有性能预测性的缓存大小限定(见上文,基于容量回收)。使用软引用值的缓存同样用==而不是equals比较值。

其实这里使用最多的还是基于时间的定时回收, 其他的两种回收方式大家可以根据自己的项目而定.

缓存的显示刷新和清除:

(任何时候,你都可以显式地清除缓存项,而不是等到它被回收)

这里需要说明下刷新(refresh)和清除(invalidate)的区别:

刷新和回收不太一样。正如LoadingCache.refresh(K)所声明,刷新表示为键加载新值,这个过程可以是异步的。在刷新操作进行时,

缓存仍然可以向其他线程返回旧值,而不像回收操作,读缓存的线程必须等待新值加载完成。

如果刷新过程抛出异常,缓存将保留旧值,而异常会在记录到日志后被丢弃 .

  • 刷新: Cache.refresh(K k)
  • 个别清除:Cache.invalidate(key)
  • 批量清除:Cache.invalidateAll(keys)
  • 清除所有缓存项:Cache.invalidateAll()

三: 使用实例

这里更新下我在项目中常用的guava cache的实例. 更新于2016年12月14日.

LoadingCache<String, Map<Long, CarAttentionDTO>> cache = CacheBuilder.newBuilder()
.expireAfterAccess(30, TimeUnit.MINUTES)
.build(new CacheLoader<String, Map<Long, CarAttentionDTO>>() {
public Map<Long, CarAttentionDTO> load(String key) { // no checked exception
LOGGER.info("loading car week attention data......");
long startTime = System.currentTimeMillis();
List<String> groupBy = Lists.newArrayList();
groupBy.add("key2"); Map<String, String> where = Maps.newHashMap();
where.put("group_name", String.valueOf(CommonConstants.CounterGroup.ATTENTION));
where.put("key1", String.valueOf(CommonConstants.DataType.CAR)); Calendar cal = Calendar.getInstance();
Date dateTo = DateUtils.addDays(cal.getTime(), -1);
Date dateFrom = DateUtils.addDays(cal.getTime(), -8); int dayTo = Integer.valueOf(DateFormatUtils.format(dateTo, "yyyyMMdd"));
int dayFrom = Integer.valueOf(DateFormatUtils.format(dateFrom, "yyyyMMdd"));
List<CountDayUvEntity> list = uvEntityDao.countByParams(groupBy, where, dayFrom, dayTo); int multiple = configReader.getInt(CommonConstants.SystemConfigKey.ATTENTION_MULTIPLE, 53);
Map<Long, CarAttentionDTO> tempMap = Maps.newHashMap();
for (CountDayUvEntity uvEntity : list) {
CarAttentionDTO attentionDTO = new CarAttentionDTO();
attentionDTO.setCarId(Long.valueOf(uvEntity.getKey2()));
attentionDTO.setAttention(uvEntity.getCount() * multiple + RandomUtils.nextInt(0, 10));
tempMap.put(attentionDTO.getCarId(), attentionDTO);
} LOGGER.info("load car week attention finished. useTime=" + (System.currentTimeMillis() - startTime));
return tempMap;
}
});
private Cache<String, Object> carIndexCache = CacheBuilder.newBuilder().expireAfterAccess(20, TimeUnit.MINUTES).build();

public Map<Long, Long> getCarAttentions() throws ExecutionException {
String key = "getCarAttentions";
return (Map<Long, Long>) carIndexCache.get(key, new Callable<Map<Long, Long>>() {
@Override
public Map<Long, Long> call() throws Exception {
List<CarIndexEntity> carIndexs = carIndexEntityDao.findAll(
CarIndexEntity.Fields.type.eq(CommonConstants.CarIndexStatus.ATTENTION));
Map<Long, Long> data = Maps.newHashMapWithExpectedSize(carIndexs.size());
for (CarIndexEntity carIndex : carIndexs) {
data.put(carIndex.getCarId(), carIndex.getCount());
}
return data;
}
});
} public Map<Long, Long> getCarSales() throws ExecutionException {
String key = "getCarSales";
return (Map<Long, Long>) carIndexCache.get(key, new Callable<Map<Long, Long>>() {
@Override
public Map<Long, Long> call() throws Exception {
List<CarIndexEntity> carIndexs = carIndexEntityDao.findAll(
CarIndexEntity.Fields.type.eq(CommonConstants.CarIndexStatus.SALES));
Map<Long, Long> data = Maps.newHashMapWithExpectedSize(carIndexs.size());
for (CarIndexEntity carIndex : carIndexs) {
data.put(carIndex.getCarId(), carIndex.getCount());
} return data;
}
});
}

其实两种情况都是一样的, 第二个是使用场景是一个service有多个方法都需要用到guava cache.

好了 知道了这些就可以在项目中直接使用了, 更多的内容请看Guava Cache官方文档(翻译版):http://ifeve.com/google-guava-cachesexplained/

[Java 缓存] Java Cache之 Guava Cache的简单应用.的更多相关文章

  1. [Java 缓存] Java Cache之 DCache的简单应用.

    前言 上次总结了下本地缓存Guava Cache的简单应用, 这次来继续说下项目中使用的DCache的简单使用. 这里分为几部分进行总结, 1)DCache介绍; 2)DCache配置及使用; 3)使 ...

  2. google guava cache缓存基本使用讲解

    代码地址:https://github.com/vikde/demo-guava-cache 一.简介 guava cache是google guava中的一个内存缓存模块,用于将数据缓存到JVM内存 ...

  3. 一个缓存使用案例:Spring Cache VS Caffeine 原生 API

    最近在学习本地缓存发现,在 Spring 技术栈的开发中,既可以使用 Spring Cache 的注解形式操作缓存,也可用各种缓存方案的原生 API.那么是否 Spring 官方提供的就是最合适的方案 ...

  4. 自定义缓存管理器 或者 Spring -- cache

    Spring Cache 缓存是实际工作中非常常用的一种提高性能的方法, 我们会在许多场景下来使用缓存. 本文通过一个简单的例子进行展开,通过对比我们原来的自定义缓存和 spring 的基于注释的 c ...

  5. Spring配置cache(concurrentHashMap,guava cache、redis实现)附源码

    在应用程序中,数据一般是存在数据库中(磁盘介质),对于某些被频繁访问的数据,如果每次都访问数据库,不仅涉及到网络io,还受到数据库查询的影响:而目前通常会将频繁使用,并且不经常改变的数据放入缓存中,从 ...

  6. Guava Cache相关

    官方:http://ifeve.com/google-guava-cachesexplained/ 理解:https://segmentfault.com/a/1190000007300118 项目中 ...

  7. Guava Cache 原理分析与最佳实践

    前言 目前大部分互联网架构 Cache 已经成为了必可不少的一环.常用的方案有大家熟知的 NoSQL 数据库(Redis.Memcached),也有大量的进程内缓存比如 EhCache .Guava ...

  8. Java缓存

    Java中要用到缓存的地方很多,首当其冲的就是持久层缓存,针对持久层谈一下: 要实现java缓存有很多种方式,最简单的无非就是static HashMap,这个显然是基于内存缓存,一个map就可以搞定 ...

  9. 浅谈java缓存

    java中要用到缓存的地方很多,首当其冲的就是持久层缓存,针对持久层谈一下: 要实现java缓存有很多种方式,最简单的无非就是static HashMap,这个显然是基于内存缓存,一个map就可以搞定 ...

随机推荐

  1. Unity3d学习 预设体(prefab)的一些理解

    之前一直在想如果要在Unity3d上创建很多个具有相同结构的对象,是如何做的,后来查了相关资料发现预设体可以解决这个问题! 预设体的概念: 组件的集合体 , 预制物体可以实例化成游戏对象. 创建预设体 ...

  2. Velocity笔记--使用Velocity获取动态Web项目名的问题

    以前使用jsp开发的时候,可以通过request很轻松的获取到根项目名,现在换到使用velocity渲染视图,因为已经不依赖servlet,request等一些类的环境,而Web项目的根项目名又不是写 ...

  3. dotNet Core开发环境搭建及简要说明

    一.安装 .NET Core SDK 在 Windows 上使用 .NET Core 的最佳途径:使用Visual Studio. 免费下载地址: Visual Studio Community 20 ...

  4. 程序员必须要知道的Hadoop的一些事实

    程序员必须要知道的Hadoop的一些事实.现如今,Apache Hadoop已经无人不知无人不晓.当年雅虎搜索工程师Doug Cutting开发出这个用以创建分布式计算机环境的开源软...... 1: ...

  5. ABP创建数据库操作步骤

    1 ABP创建数据库操作步骤 1.1 SimpleTaskSystem.Web项目中的Web.config文件修改数据库配置. <add name="Default" pro ...

  6. Git的四个基本概念及 git的工作流程

  7. Linux LVM逻辑卷配置过程详解

    许多Linux使用者安装操作系统时都会遇到这样的困境:如何精确评估和分配各个硬盘分区的容量,如果当初评估不准确,一旦系统分区不够用时可能不得不备份.删除相关数据,甚至被迫重新规划分区并重装操作系统,以 ...

  8. [转]ThinkPHP中实例化对象M()和D()的区别,select和find的区别

    1.ThinkPHP中实例化对象M()和D()的区别 在实例化的过程中,经常使用D方法和M方法,这两个方法的区别在于M方法实例化模型无需用户为每个数据表定义模型类,如果D方法没有找到定义的模型类,则会 ...

  9. 从贝叶斯到粒子滤波——Round 1

    粒子滤波确实是一个挺复杂的东西,从接触粒子滤波到现在半个多月,博主哦勒哇看了N多篇文章,查略了嗨多资料,很多内容都是看了又看,细细斟酌.今日,便在这里验证一下自己的修炼成果,请各位英雄好汉多多指教. ...

  10. Xamarin.iOS开发初体验

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAKwAAAA+CAIAAAA5/WfHAAAJrklEQVR4nO2c/VdTRxrH+wfdU84pW0