hdu 1576 求逆元
题意:给出n=A mod 9973和B,求(A/B) mod 9973
昨天用扩展欧几里得做过这题,其实用逆元也可以做。
逆元的定义:例如a*b≡1 (mod m),则b就是a关于m的逆元。
求逆元方法也很简单,用扩展欧几里得解这个方程即可。
逆元性质:若a是b的逆元,则(x/a)mod p=(x*b)mod p
对于本题呢?设B的逆元为x,
那么有(A/B) mod 9973=((A mod 9973)*(x mod 9973))mod 9973
Reference: http://blog.csdn.net/leonharetd/article/details/13095191
#include <iostream>
using namespace std;
__int64 a,b,b1,x,k,tm,r,T,n,ans; __int64 extend_gcd(__int64 a,__int64 b,__int64 &x,__int64 &y)
{
if (b==)
{
x=;
y=;
return a;
}
else
{
__int64 r=extend_gcd(b,a%b,y,x);
y=y-x*(a/b);
return r;
}
} int gcd(int a,int b)
{
if (b==) return a;
return gcd(b,a%b);
} int main()
{
cin>>T;
while (T--)
{
cin>>n>>b;
//bx==1 (mod m)
tm=extend_gcd(b,,x,k);
b1=x*(/tm);
r=/tm;
b1=(b1%r+r)%r; //求出最小非负整数解
ans=(n*(b1%))%;
cout<<ans<<endl; }
return ;
}
hdu 1576 求逆元的更多相关文章
- HDU 1576 (乘法逆元)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576 题目大意:求(A/B)mod 9973.但是给出的A是mod形式n,n=A%9973. 解题思 ...
- 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)
题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...
- HDU 5768Lucky7(多校第四场)容斥+中国剩余定理(扩展欧几里德求逆元的)+快速乘法
地址:http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Time Limit: 2000/1000 MS (Java/Others) M ...
- hdu 1576 A/B 【扩展欧几里得】【逆元】
<题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...
- HDU 5407 CRB and Candies(LCM +最大素因子求逆元)
[题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...
- hdu_1576A/B(扩展欧几里得求逆元)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others) Me ...
- HDU 1576 A/B 数论水题
http://acm.hdu.edu.cn/showproblem.php?pid=1576 写了个ex_gcd的模板...太蠢导致推了很久的公式 这里推导一下: 因为 1 = BX + 9973Y ...
- HDU 1576 A/B (两种解法)
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 分析:等式枚举法,由题意可得:, ,代入 , 得:,把变量 合在一起得: :即满足 为 倍 ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
随机推荐
- C++基础笔记(三)C++面向对象
C++类 C++类与结构体类似 定义 class 类名{ <成员定义>; ........ }; 文件格式 *.mm 支持 C/C++ *.cpp C++源文件 *.h C++头文件 ...
- Linux安装Redis
环境:Centos 6.2 redis是当前比较热门的NOSQL系统之一,它是一个key-value存储系统.和Memcached类似,但很大程度补偿了memcached的不足,它支持存储的value ...
- oracle wm_concat(column)函数的使用
oracle wm_concat(column)函数使我们经常会使用到的,下面就教您如何使用oraclewm_concat(column)函数实现字段合并,如果您对oracle wm_concat(c ...
- ArcGIS Engine 中 Geometric Network 显示流向代码
原文地址:http://hi.baidu.com/steeeeps/item/165fbc15475e94741009b5b3 非常感谢作者. 以前学习几何网络时,对效用网络流向进行了总结,原理与效果 ...
- Saltstack-初体验
安装 rpm -Uvh http://mirrors.yun-idc.com/epel/6Server/x86_64/epel-release-6-8.noarch.rpm yum install s ...
- zepto.js 源码解析
http://www.runoob.com/w3cnote/zepto-js-source-analysis.html Zepto是一个轻量级的针对现代高级浏览器的JavaScript库, 它与jqu ...
- .NET 常见的偏门问题
1.空格 一般情况下," " 的空格可能被过滤掉,在中文输入法中也同样. 有的人会使用2次空格,但是还是无法达到目的. 实现方法:" "的空格,这不是使用2次空 ...
- Oracle Update
在表的更新操作中,在很多情况下需要在表达式中引用要更新的表以外的数据.象sql server提供了update的from 子句,可以将要更新的表与其它的数据源连接起来.虽然只能对一个表进行更新,但是通 ...
- 【转】【Asp.Net】了解使用 ASP.NET AJAX 进行局部页面更新
简介Microsoft的 ASP.NET 技术提供了一个面向对象.事件驱动的编程模型,并将其与已编译代码的优势结合起来.但其服务器端的处理模型仍存在技术本身所固有的几点不足: 进行页面更新需要往返服务 ...
- 【转】【Http】Http各种错误的意思
IIS状态代码的含义 当用户试图通过HTTP或文件传输协议(FTP)访问一台正在运行Internet信息服务(IIS)的服务器上的内容时,IIS返回一个表示该请求的状态的数字代码.该状态代码记录在II ...