题意:给出n=A mod 9973和B,求(A/B) mod 9973

昨天用扩展欧几里得做过这题,其实用逆元也可以做。

逆元的定义:例如a*b≡1 (mod m),则b就是a关于m的逆元。

求逆元方法也很简单,用扩展欧几里得解这个方程即可。

逆元性质:若a是b的逆元,则(x/a)mod p=(x*b)mod p

对于本题呢?设B的逆元为x,

那么有(A/B) mod 9973=((A mod 9973)*(x mod 9973))mod 9973

Reference:  http://blog.csdn.net/leonharetd/article/details/13095191

 #include <iostream>
using namespace std;
__int64 a,b,b1,x,k,tm,r,T,n,ans; __int64 extend_gcd(__int64 a,__int64 b,__int64 &x,__int64 &y)
{
if (b==)
{
x=;
y=;
return a;
}
else
{
__int64 r=extend_gcd(b,a%b,y,x);
y=y-x*(a/b);
return r;
}
} int gcd(int a,int b)
{
if (b==) return a;
return gcd(b,a%b);
} int main()
{
cin>>T;
while (T--)
{
cin>>n>>b;
//bx==1 (mod m)
tm=extend_gcd(b,,x,k);
b1=x*(/tm);
r=/tm;
b1=(b1%r+r)%r; //求出最小非负整数解
ans=(n*(b1%))%;
cout<<ans<<endl; }
return ;
}

hdu 1576 求逆元的更多相关文章

  1. HDU 1576 (乘法逆元)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576 题目大意:求(A/B)mod 9973.但是给出的A是mod形式n,n=A%9973. 解题思 ...

  2. 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)

    题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...

  3. HDU 5768Lucky7(多校第四场)容斥+中国剩余定理(扩展欧几里德求逆元的)+快速乘法

    地址:http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Time Limit: 2000/1000 MS (Java/Others)    M ...

  4. hdu 1576 A/B 【扩展欧几里得】【逆元】

    <题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...

  5. HDU 5407 CRB and Candies(LCM +最大素因子求逆元)

    [题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...

  6. hdu_1576A/B(扩展欧几里得求逆元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others)    Me ...

  7. HDU 1576 A/B 数论水题

    http://acm.hdu.edu.cn/showproblem.php?pid=1576 写了个ex_gcd的模板...太蠢导致推了很久的公式 这里推导一下: 因为 1 = BX + 9973Y ...

  8. HDU 1576 A/B (两种解法)

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 分析:等式枚举法,由题意可得:, ,代入 ,    得:,把变量 合在一起得: :即满足 为 倍 ...

  9. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

随机推荐

  1. win7系统电脑连接小米蓝牙音箱

    一.买好蓝牙适配器,插到电脑上. 二.右下角工具栏找到蓝牙图标 三.右键这个图标,选择'显示Bluetooth设备' 四.找到小米蓝牙音箱 'NDZ-030-AA' 五.双击打开它,然后选择'服务'选 ...

  2. iOS获取窗口当前显示的控制器

    解决类似网易新闻客户端收到新闻推送后,弹出一个UIAlert,然后跳转到新闻详情页面这种需求 1.提供一个UIView的分类方法,这个方法通过响应者链条获取view所在的控制器 - (UIViewCo ...

  3. Windows下安装Redmine

    参考链接:http://www.cnblogs.com/afarmer/archive/2011/08/06/2129126.html 最新教程:http://www.myexception.cn/w ...

  4. 快捷键forMac

    1.手动补全快捷键 设置completion+basic或者completion+smartType 2.快速导入指定API的包 command+1

  5. 什么是json

    http://www.ruanyifeng.com/blog/2009/05/data_types_and_json.html http://edu.51cto.com/lesson/id-71123 ...

  6. 在 WinForm 中使用 Direct2D

    在 C# 的 WinForm 应用中,界面的绘制使用的是 GDI+.不过在一些特别的应用中,可能需要用硬件加速来提高绘制的效率.下面就来介绍两种在 WinForm 应用中嵌入 Direct2D 的方法 ...

  7. [转]的C#实现三维数字地形漫游(基于Irrlicht)

    马省轩  任丽娜 摘  要:本文采用C#编程语言,利用Irrlicht三维图形引擎实现了三维数字地形的漫游.为三维数字地形显示提供了较易实现的解决方案. 关键词:C#   高度图 Irrlicht引擎 ...

  8. 在opencv3中的机器学习算法练习:对OCR进行分类

    OCR (Optical Character Recognition,光学字符识别),我们这个练习就是对OCR英文字母进行识别.得到一张OCR图片后,提取出字符相关的ROI图像,并且大小归一化,整个图 ...

  9. Opencv step by step - 鼠标事件

    鼠标事件有下面几种(没有滚轮事件,比较遗憾): #define CV_EVENT_MOUSEMOVE 0 滑动 #define CV_EVENT_LBUTTONDOWN 1 左键点击 #define ...

  10. JSONProxy - 获取跨域json数据工具

    JSONProxy是一款很好的获取json数据的代理网站,“Enables cross-domain requests to any JSON API”.当你苦于无法跨域获取json数据时,不妨一试, ...