这是DFS系列的第二篇

割边的概念

In graph theory, a bridgeisthmuscut-edge, or cut arc is an edge of a graph whose deletion increases its number of connected components. Equivalently, an edge is a bridge if and only if it is not contained in any cycle. A graph is said to be bridgeless or isthmus-free if it contains no bridges.

Let $G = (V, E)$ be a connected, undirected graph, a bridge of $G$ is an edge whose removal disconnects $G$. (Introduction to Algorithms p.621)

注意割边这一概念只适用于无向图,不适用于有向图,因为有向图的连通性和无向图的连通性是完全不同的两个概念。对于某有向图 $G$,简单地称它连通是很不完善的。有向图的连通性有强连通(strongly connected)和半连通(semiconnected)两种常见的提法。上面英文描述中的“graph”及下文中的“”均指无向图

割边 (cut edge)也称作(bridge)是删除后能使图的连通分量增加的边。

下面我们只考虑没有重边的无向图

考虑一个连通的无向图 $G$,若它含有某条割边 $(u, v)$,那么去掉这条边后,将得到2个连通图 $G'$,$H'$,而不可能得到 $2$ 个以上连通图,因为一条边最多能将 $2$ 个连通图合为一个联通图。(这句话貌似和上下文无关)

下面介绍求无向图所有割边的Tarjan算法(Tarjan's Bridge-Finding Algorithm

我们只考虑对无向连通图 $G$ 求割边,若图 $G$ 不连通那么就对 $G$ 的各个连通分量求割边。

我们知道 DFS 一个无向图将其所有边分成两类树边(tree edge)与回边(back edge)。显然地,割边只能是树边而绝不可能是回边。

考虑 一条树边 $(u\to v)$ 是割边 的条件。这条件应当是在DFS树中,以 $v$ 为根的子树(简称子树 $v$)中的所有节点都没有连向 $u$ 的祖先节点(包括 $u$ 本身)的回边,也就是说子树 $v$ 仅仅靠着边 $(u,v)$ 和其他节点保持连通。

为了判断上述条件,我们在 DFS 过程中记录每个节点的 dfn 值与 low 值,树边 $(u\to v)$ 是割边的充要条件即是 \(\color{blue}{\mathrm{low}[v]>\mathrm{dfn}[u]}\) 。

struct edge{
int to, nt;
bool flag;
}E[MAX_E<<];
int head[MAX_V]; int dfn[MAX_V], low[MAX_V];
int ts; //time stamp
void dfs(int u, int f){
dfs[u]=low[u]=++ts;
for(int i=head[i]; ~i; i=E[i].nt){
int &v=E[i].to;
if(!dfn[v]){ //tree edge
dfs(v, f);
low[u]=min(low[u], low[v]);
if(low[v]>dfn[u]){
e[i].flag=e[i^].flag=true;
}
}
else if(v!=f&&dfn[v]<dfn[u]){ //back edge
low[u]=min(low[u], dfn[v]);
}
}
} void solve(int N){
memset(dfn, , sizeof(dfn));
ts=;
for(int i=; i<=N; i++)
if(!dfn[i]) dfs(i, i);
}

现在考虑有重边的情况。这时上面的写法不能识别所有回边。首先明确一点:不论是否有重边,DFS 都将所有边分成树边回边两类。

但是按上面的写法,所有重边要么全是树边,要么全是回边,因而不能识别所有回边(这并不是 DFS 算法本身有问题,而是写法有问题)。这是因为 DFS 的参数是 $u$(当前节点)和 $f$(当前节点的父亲节点),我们判断回边的依据是

else if(v!=f&&dfn[v]<dfn[u]){	//back edge
low[u]=min(low[u], dfn[v]);
}

解决办法是将参数 $u$换成树边 $( u\to f )$ 的编号。

struct edge{
int to, nt, id;
bool tag;
}E[MAX_N<<];
int head[MAX_N]; int dfn[MAX_N], low[MAX_N], ts; //time_stamp
void dfs(int u, int te){
dfn[u]=low[u]=++ts;
for(int i=head[u]; ~i; i=E[i].nt){
int &v=E[i].to, &id=E[i].id;
if(!dfn[v]){ //tree_edge
dfs(v, id);
low[u]=min(low[u], low[v]);
if(low[v]>dfn[u])
e[i].tag=true;
}
else if(id!=te&&dfn[v]<dfn[u]){ //back_edge
low[u]=min(low[u], dfn[v]);
}
}
}

一般来说,没必要在结构体 edge 内加个变量 id,按通常的建图方式,无向边的 ID 就是其对应的某条有向边的 ID 右移一位。

连通性2 无向图的割边 (cut edge)的更多相关文章

  1. ZOJ2588 Burning Bridges 无向图的割边

    题目大意:求无向图的割边编号. 割边定义:在一个连通图中,如果删去一个边e,图便变成不连通的两个部分,则e为该图的割边. 求法:边(u,v) 不是割边,当且仅当边(u,v)在一个环内.因此所有不在环内 ...

  2. 图连通性【tarjan点双连通分量、边双联通分量】【无向图】

    根据 李煜东大牛:图连通性若干拓展问题探讨 ppt学习. 有割点不一定有割边,有割边不一定有割点. 理解low[u]的定义很重要. 1.无向图求割点.点双联通分量: 如果对一条边(x,y),如果low ...

  3. 『Tarjan算法 无向图的双联通分量』

    无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被 ...

  4. [HDOJ4738]Caocao's Bridges(双联通分量,割边,tarjan)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4738 给一张无向图,每一条边都有权值.找一条割边,使得删掉这条边双连通分量数量增加,求权值最小那条. ...

  5. Tarjan 强连通分量 及 双联通分量(求割点,割边)

    Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1)         有向图的强联通分量 (2)         无向图的双联通分量(求割点,桥) ...

  6. LCT(link cut tree) 动态树

    模板参考:https://blog.csdn.net/saramanda/article/details/55253627 综合各位大大博客后整理的模板: #include<iostream&g ...

  7. Tarjan 算法求割点、 割边、 强联通分量

    Tarjan算法是一个基于dfs的搜索算法, 可以在O(N+M)的复杂度内求出图的割点.割边和强联通分量等信息. https://www.cnblogs.com/shadowland/p/587225 ...

  8. UVA796- Critical Links(无向图中的桥梁)

    题目链接 题意: 给出一个无向图,按顺序输出桥 思路:求出全部的桥,然后按顺序输出就可以 代码: #include <iostream> #include <cstdio> # ...

  9. UVA315- Network(无向图割点)

    题目链接 题意: 给出一张无向图,求割点的个数 思路:非常裸的题目.直接套用模版就可以. 代码: #include <iostream> #include <cstdio> # ...

随机推荐

  1. 3d照片环效果(修改版--添加了x轴y轴双向转动和修复模糊度的bug)

    今天用用前两天总结的css3新效果写了一个3d照片环的效果,其中还有些bug大家可以看一看,一起改进. <!DOCTYPE html> <html lang="en&quo ...

  2. mysql高可用方案总结性说明

    MySQL的各种高可用方案,大多是基于以下几种基础来部署的(也可参考:Mysql优化系列(0)--总结性梳理   该文后面有提到)1)基于主从复制:2)基于Galera协议(PXC):3)基于NDB引 ...

  3. scanf和cin的差异

    scanf和cin的差异 引例:http://www.cnblogs.com/shenben/p/5516996.html 大家都知道,在C++中有两种输入.输出方式—scanf和cin,但是,它们之 ...

  4. SSH公钥认证+优化

    一 ssh公钥认证流程: sshclinet机器:产生公私钥(公钥相当于一把锁) sshclient:将公钥发给sshserver(抛出锁子) sshclinet去连sshserver不需要密钥   ...

  5. nginx安装pcre

    一.有的服务器上没有安装pcre那么安装nginx的时候会报错 所以在安装之前我们可以: yum install pcre-devel 如果很不巧,服务器也没有配yum,也不能连互联网.那么我们只能自 ...

  6. Windows下MemCache多端口安装配置

    Windows下MemCache环境安装配置的文章很多,但大部分都是用的默认端口11211,如何修改默认端口.如何在一台服务器上配置多个MemCache端口?这正式本文要解决的问题. 1.从微软官网下 ...

  7. js屏蔽回车键

    document.onkeydown = function () {            if (window.event && window.event.keyCode == 13 ...

  8. 用 eric6 与 PyQt5 实现python的极速GUI编程(系列03)---- Drawing(绘图)(2)-- 画点

    [概览] 本文实现如下的程序:(在窗体中绘画出[-100, 100]两个周期的正弦函数图像) 主要步骤如下: 1.在eric6中新建项目,新建窗体 2.(自动打开)进入PyQt5 Desinger,编 ...

  9. IT男的”幸福”生活

    IT男的”幸福”生活 IT男的”幸福”生活"续1 IT男的”幸福”生活"续2  IT男的”幸福”生活"续3  IT男的”幸福”生活"续4  IT男的”幸福”生活 ...

  10. Windows Phone8 中如何引用 SQLite 数据库

    SQLite数据库介绍 1.SQLite是一款轻型的嵌入式数据库,使用C++开发,使用非常广泛 2.SQLite是一款跨平台的数据库,支持Windows.Linux.Android.IOS.Windo ...