这是DFS系列的第二篇

割边的概念

In graph theory, a bridgeisthmuscut-edge, or cut arc is an edge of a graph whose deletion increases its number of connected components. Equivalently, an edge is a bridge if and only if it is not contained in any cycle. A graph is said to be bridgeless or isthmus-free if it contains no bridges.

Let $G = (V, E)$ be a connected, undirected graph, a bridge of $G$ is an edge whose removal disconnects $G$. (Introduction to Algorithms p.621)

注意割边这一概念只适用于无向图,不适用于有向图,因为有向图的连通性和无向图的连通性是完全不同的两个概念。对于某有向图 $G$,简单地称它连通是很不完善的。有向图的连通性有强连通(strongly connected)和半连通(semiconnected)两种常见的提法。上面英文描述中的“graph”及下文中的“”均指无向图

割边 (cut edge)也称作(bridge)是删除后能使图的连通分量增加的边。

下面我们只考虑没有重边的无向图

考虑一个连通的无向图 $G$,若它含有某条割边 $(u, v)$,那么去掉这条边后,将得到2个连通图 $G'$,$H'$,而不可能得到 $2$ 个以上连通图,因为一条边最多能将 $2$ 个连通图合为一个联通图。(这句话貌似和上下文无关)

下面介绍求无向图所有割边的Tarjan算法(Tarjan's Bridge-Finding Algorithm

我们只考虑对无向连通图 $G$ 求割边,若图 $G$ 不连通那么就对 $G$ 的各个连通分量求割边。

我们知道 DFS 一个无向图将其所有边分成两类树边(tree edge)与回边(back edge)。显然地,割边只能是树边而绝不可能是回边。

考虑 一条树边 $(u\to v)$ 是割边 的条件。这条件应当是在DFS树中,以 $v$ 为根的子树(简称子树 $v$)中的所有节点都没有连向 $u$ 的祖先节点(包括 $u$ 本身)的回边,也就是说子树 $v$ 仅仅靠着边 $(u,v)$ 和其他节点保持连通。

为了判断上述条件,我们在 DFS 过程中记录每个节点的 dfn 值与 low 值,树边 $(u\to v)$ 是割边的充要条件即是 \(\color{blue}{\mathrm{low}[v]>\mathrm{dfn}[u]}\) 。

struct edge{
int to, nt;
bool flag;
}E[MAX_E<<];
int head[MAX_V]; int dfn[MAX_V], low[MAX_V];
int ts; //time stamp
void dfs(int u, int f){
dfs[u]=low[u]=++ts;
for(int i=head[i]; ~i; i=E[i].nt){
int &v=E[i].to;
if(!dfn[v]){ //tree edge
dfs(v, f);
low[u]=min(low[u], low[v]);
if(low[v]>dfn[u]){
e[i].flag=e[i^].flag=true;
}
}
else if(v!=f&&dfn[v]<dfn[u]){ //back edge
low[u]=min(low[u], dfn[v]);
}
}
} void solve(int N){
memset(dfn, , sizeof(dfn));
ts=;
for(int i=; i<=N; i++)
if(!dfn[i]) dfs(i, i);
}

现在考虑有重边的情况。这时上面的写法不能识别所有回边。首先明确一点:不论是否有重边,DFS 都将所有边分成树边回边两类。

但是按上面的写法,所有重边要么全是树边,要么全是回边,因而不能识别所有回边(这并不是 DFS 算法本身有问题,而是写法有问题)。这是因为 DFS 的参数是 $u$(当前节点)和 $f$(当前节点的父亲节点),我们判断回边的依据是

else if(v!=f&&dfn[v]<dfn[u]){	//back edge
low[u]=min(low[u], dfn[v]);
}

解决办法是将参数 $u$换成树边 $( u\to f )$ 的编号。

struct edge{
int to, nt, id;
bool tag;
}E[MAX_N<<];
int head[MAX_N]; int dfn[MAX_N], low[MAX_N], ts; //time_stamp
void dfs(int u, int te){
dfn[u]=low[u]=++ts;
for(int i=head[u]; ~i; i=E[i].nt){
int &v=E[i].to, &id=E[i].id;
if(!dfn[v]){ //tree_edge
dfs(v, id);
low[u]=min(low[u], low[v]);
if(low[v]>dfn[u])
e[i].tag=true;
}
else if(id!=te&&dfn[v]<dfn[u]){ //back_edge
low[u]=min(low[u], dfn[v]);
}
}
}

一般来说,没必要在结构体 edge 内加个变量 id,按通常的建图方式,无向边的 ID 就是其对应的某条有向边的 ID 右移一位。

连通性2 无向图的割边 (cut edge)的更多相关文章

  1. ZOJ2588 Burning Bridges 无向图的割边

    题目大意:求无向图的割边编号. 割边定义:在一个连通图中,如果删去一个边e,图便变成不连通的两个部分,则e为该图的割边. 求法:边(u,v) 不是割边,当且仅当边(u,v)在一个环内.因此所有不在环内 ...

  2. 图连通性【tarjan点双连通分量、边双联通分量】【无向图】

    根据 李煜东大牛:图连通性若干拓展问题探讨 ppt学习. 有割点不一定有割边,有割边不一定有割点. 理解low[u]的定义很重要. 1.无向图求割点.点双联通分量: 如果对一条边(x,y),如果low ...

  3. 『Tarjan算法 无向图的双联通分量』

    无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被 ...

  4. [HDOJ4738]Caocao's Bridges(双联通分量,割边,tarjan)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4738 给一张无向图,每一条边都有权值.找一条割边,使得删掉这条边双连通分量数量增加,求权值最小那条. ...

  5. Tarjan 强连通分量 及 双联通分量(求割点,割边)

    Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1)         有向图的强联通分量 (2)         无向图的双联通分量(求割点,桥) ...

  6. LCT(link cut tree) 动态树

    模板参考:https://blog.csdn.net/saramanda/article/details/55253627 综合各位大大博客后整理的模板: #include<iostream&g ...

  7. Tarjan 算法求割点、 割边、 强联通分量

    Tarjan算法是一个基于dfs的搜索算法, 可以在O(N+M)的复杂度内求出图的割点.割边和强联通分量等信息. https://www.cnblogs.com/shadowland/p/587225 ...

  8. UVA796- Critical Links(无向图中的桥梁)

    题目链接 题意: 给出一个无向图,按顺序输出桥 思路:求出全部的桥,然后按顺序输出就可以 代码: #include <iostream> #include <cstdio> # ...

  9. UVA315- Network(无向图割点)

    题目链接 题意: 给出一张无向图,求割点的个数 思路:非常裸的题目.直接套用模版就可以. 代码: #include <iostream> #include <cstdio> # ...

随机推荐

  1. Android Handler处理机制 ( 二 ) ——Handler,Message,Looper,MessageQueue

    Android是消息驱动的,实现消息驱动有几个要素: 消息的表示:Message 消息队列:MessageQueue 消息循环,用于循环取出消息进行处理:Looper 消息处理,消息循环从消息队列中取 ...

  2. AE二次开发技巧之撤销、重做

    原文地址:http://www.cnblogs.com/wylaok/articles/2363208.html 可以把AE自带的重做.撤销按钮或工具添加到axToolBarControl上,再把ax ...

  3. iOS中使用RSA对数据进行加密解密

    RSA算法是一种非对称加密算法,常被用于加密数据传输.如果配合上数字摘要算法, 也可以用于文件签名. 本文将讨论如何在iOS中使用RSA传输加密数据. 本文环境 mac os openssl-1.0. ...

  4. 第三章 续:时间控件(TimePicker)

    上一章,介绍了datetimepicker使用, 然而,当只需要时分秒的时候,它并不怎么理想,因此又找了一个单独的时间控制插件 现在介绍一个timepicker,用法差不多,但是它只是基于bootst ...

  5. maven中的 dependencies 和 dependencyManagement 的区别

    今天我在配置 sellercenter 的接口测试环境的时候,发现一些依赖的写法不太一致: 比如有的依赖的<scope>是写在子项目中的 <dependencies> 下的&l ...

  6. python数字图像处理(1):环境安装与配置

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...

  7. WebSocket 服务器3

    其实,在服务器的选择上很广,基本上,主流语言都有WebSocket的服务器端实现,而我们作为前端开发工程师,当然要选择现在比较火热的NodeJS作为我们的服务器端环境了.NodeJS本身并没有原生的W ...

  8. 《信息安全系统设计基础》第一次实验报告--Linux 基础入门

    北京电子科技学院(BESTI) 实     验    报     告 课程:信息安全设计基础 班级:1352  姓名:何伟钦  学号:20135223 成绩:            指导教师:娄嘉鹏 ...

  9. diff: /../Podfile.lock: No such file or directory

    从github上下载源码运行会报错:问题1描述: diff: /../Podfile.lock: No such file or directory diff: /Manifest.lock: No ...

  10. Jenkins进阶之自动发送邮件的Default Content设置模板

    分享一个简洁实用的Jenkins项目邮件管理系统的"Default Content"设置模板 配置如下: <h1><center><font colo ...