BZOJ-1834 网络扩容 最小费用最大流+最大流+乱搞
1834: [ZJOI2010]network 网络扩容
Time Limit: 3 Sec Memory Limit: 64 MB
Submit: 2269 Solved: 1136
[Submit][Status][Discuss]
Description
给定一张有向图,每条边都有一个容量C和一个扩容费用W。这里扩容费用是指将容量扩大1所需的费用。求: 1、 在不扩容的情况下,1到N的最大流; 2、 将1到N的最大流增加K所需的最小扩容费用。
Input
输入文件的第一行包含三个整数N,M,K,表示有向图的点数、边数以及所需要增加的流量。 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边。
Output
输出文件一行包含两个整数,分别表示问题1和问题2的答案。
Sample Input
5 8 2
1 2 5 8
2 5 9 9
5 1 6 2
5 1 1 8
1 2 8 7
2 5 4 9
1 2 1 1
1 4 2 1
Sample Output
13 19
30%的数据中,N<=100
100%的数据中,N<=1000,M<=5000,K<=10
HINT
Source
Day1
这道题啊,似乎不是很复杂,起码省去了bt建图,充其量是个模板堆上,随便乱搞几行,直接正解。(ZJOI中最水的了吧??)
先按照读入连边。(第一问最大流时不需要费用,可以先存下来,为第二问准备)
Dinic模板一套,第一问A
在第一问的参与网络上,建边。
每两个点相连,边权为inf,费用为之前存下来的。
最后再建一个源,连向1,容量为k,费用为0
zkw模板一套,第二问A
。。。。。
code:(写的冗余QwQ)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define inf 0x7fffffff
struct data{
int from,to,next,c,v,co;
}edge[100010];
int q[100010],h,t;
int dis[100010];
int head[100010]={0},cnt=1;
bool visit[100010],mark[100010];
int n,m,k;
int S,T;
int ans;
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void add(int u,int v,int cap,int cost)
{
cnt++;edge[cnt].from=u;edge[cnt].to=v;
edge[cnt].v=cap;edge[cnt].co=cost;
edge[cnt].next=head[u];head[u]=cnt;
}
void insert(int u,int v,int cap,int cost)
{
add(u,v,cap,cost);add(v,u,0,-cost);
}
void add_edge(int u,int v,int cap,int cost)
{
cnt++;edge[cnt].from=u;edge[cnt].to=v;
edge[cnt].v=cap;edge[cnt].c=cost;
edge[cnt].next=head[u];head[u]=cnt;
}
void insert_edge(int u,int v,int cap,int cost)
{
add_edge(u,v,cap,cost);add_edge(v,u,0,-cost);
}
void init()
{
n=read();m=read();k=read();
for (int i=1; i<=m; i++)
{
int u,v,c,w;
u=read();v=read();c=read();w=read();
insert(u,v,c,w);
}
S=1;T=n;
}
bool bfs()
{
memset(dis,-1,sizeof(dis));
q[1]=S;dis[S]=1;h=0;t=1;
while (h<t)
{
int j=q[++h],i=head[j];
while (i)
{
if (dis[edge[i].to]<0 && edge[i].v>0)
{
dis[edge[i].to]=dis[j]+1;
q[++t]=edge[i].to;
}
i=edge[i].next;
}
}
if (dis[T]>0) return true;
else return false;
}
int dfs(int loc,int low)
{
if (loc==T) return low;
int w,used=0;
for (int i=head[loc]; i; i=edge[i].next)
{
if (edge[i].v>0 && dis[edge[i].to]==dis[loc]+1)
{
w=dfs(edge[i].to,min(low-used,edge[i].v));
edge[i].v-=w;edge[i^1].v+=w;
used+=w;if (used==low) return low;
}
}
if (!used) dis[loc]=-1;
return used;
}
int dinic()
{
int tmp=0;
while (bfs())
{
tmp+=dfs(S,inf);
}
return tmp;
}
void problem_1()
{
int tmp=dinic();
printf("%d ",tmp);
}
void make()
{
int num=cnt;
for (int i=2; i<=num; i+=2)
insert_edge(edge[i].from,edge[i].to,inf,edge[i].co);
insert(0,1,k,0);
S=0;
}
bool spfa()
{
memset(visit,0,sizeof(visit));
for (int i=S; i<=T; i++) dis[i]=inf;
h=0,t=1;
q[0]=T;visit[T]=1;dis[T]=0;
while (h<t)
{
int now=q[h];h++;visit[now]=0;
for (int i=head[now]; i; i=edge[i].next)
if (edge[i^1].v && dis[now]-edge[i].c<dis[edge[i].to])
{
dis[edge[i].to]=dis[now]-edge[i].c;
if (!visit[edge[i].to])
{
visit[edge[i].to]=1;
q[t++]=edge[i].to;
}
}
}
return dis[S]!=inf;
}
int dfs1(int loc,int low)
{
mark[loc]=1;
if (loc==T) return low;
int w,used=0;
for (int i=head[loc]; i; i=edge[i].next)
if (dis[edge[i].to]==dis[loc]-edge[i].c && edge[i].v && !mark[edge[i].to])
{
w=dfs1(edge[i].to,min(low-used,edge[i].v));
ans+=w*edge[i].c;
edge[i].v-=w;edge[i^1].v+=w;
used+=w;if (used==low) return low;
}
return used;
}
void zkw()
{
int tmp=0;
while (spfa())
{
mark[T]=1;
while (mark[T])
{
memset(mark,0,sizeof(mark));
tmp+=dfs1(S,inf);
}
}
}
void problem_2()
{
make();
zkw();
printf("%d",ans);
}
int main()
{
init();
problem_1();
problem_2();
return 0;
}
BZOJ-1834 网络扩容 最小费用最大流+最大流+乱搞的更多相关文章
- BZOJ 1834 网络扩容(最大流+费用流)
对于第一问,直接求最大流. 对于第二问,建源点s和汇点t,s连1容量为INF,费用为0的边,n连t容量为最大流+k,费用为0的边.这样就把最大流限制为最多增加k了. 限制需要求扩充的最小费用,原图的边 ...
- BZOJ 1834 网络扩容 最大流+最小费用流
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1834 题目大意: 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是 ...
- BZOJ1834[ZJOI2010]网络扩容——最小费用最大流+最大流
题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小扩容费用 ...
- BZOJ 1834 Luogu P2604 [ZJOI2010]网络扩容 (最小费用最大流)
题目连接: (luogu) https://www.luogu.org/problemnew/show/P2604 (bzoj) https://www.lydsy.com/JudgeOnline/p ...
- BZOJ 1834网络扩容题解
一道不算太难的题目 但是真的很恶心 显然,对于第一问,我们直接无脑打模板就好了 第二问也不是很难,我们将每条边再连一条容量为inf,费用为w的边 但是流量只要小于第一问的答案加k就行了 所以我们增加一 ...
- BZOJ_1834_[ZJOI2010]network 网络扩容_费用流
BZOJ_1834_[ZJOI2010]network 网络扩容_费用流 题意: 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的 ...
- 1834. [ZJOI2010]网络扩容【费用流】
Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需 ...
- hdu 4411 2012杭州赛区网络赛 最小费用最大流 ***
题意: 有 n+1 个城市编号 0..n,有 m 条无向边,在 0 城市有个警察总部,最多可以派出 k 个逮捕队伍,在1..n 每个城市有一个犯罪团伙, 每个逮捕队伍在每个城市可以选 ...
- BZOJ 1927 星际竞速(最小费用最大流)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1927 题意:一个图,n个点.对于给出的每条边 u,v,w,表示u和v中编号小的那个到编号 ...
随机推荐
- 观察器observes与对象初始化
Demo.Person2 = Ember.Object.extend({ init: function() { alert('lljsd'); this.set('salutation', " ...
- WPF:如何为程序添加splashScreen(初始屏幕)
原文:http://www.cnblogs.com/chenxizhang/archive/2010/03/25/1694606.html 官网: https://msdn.microsoft.com ...
- CardboardCamera Prefab 中文笔记
在Cardboard的预制体(Prefab)中, CardboardCamera是最简单的一个,仅有两个子物体,一个PostRender, 一个PreRender,以及分别带的Camera组件. Ca ...
- Socket Programming in C#--Server Side
Server Side If you have understood whatever I have described so far, you will easily understand the ...
- Linux Linux共享库
so文件在linux中为共享库,与windows下的dll类似. so文件中的函数可供多个进程调用,最大可能的提供二进制代码复用. 共享库可以使代码的维护工作大大简化,当修正了一些错误或者添加了新特性 ...
- IP+IDC-chinaz抓取
#-*-coding:gbk-*- #code by anyun.org import urllib import re import time def getHtml(url): page = ur ...
- echo "scale=100; a(1)*4" | bc -l 输出圆周率
突然看到echo "scale=100; a(1)*4" | bc -l可以输出圆周率,很惊奇,后来发现很简单. 首先bc是“basic calculator”的缩写,就是初级的计 ...
- Nutch搜索引擎(第3期)_ Nutch简单应用
1.Nutch命令详解 Nutch采用了一种命令的方式进行工作,其命令可以是对局域网方式的单一命令也可以是对整个Web进行爬取的分步命令. 要看Nutch的命令说明,可执行"Nutch&qu ...
- GDB代码调试与使用
GDB代码调试与使用 Linux下GDB调试代码 源代码 编译生成执行文件 gcc -g test.c -o test 使用GDB调试 启动GDB:gdb test 从第一行列出源代码:list 直接 ...
- Chrome扩展开发之四——核心功能的实现思路
目录: 0.Chrome扩展开发(Gmail附件管理助手)系列之〇——概述 1.Chrome扩展开发之一——Chrome扩展的文件结构 2.Chrome扩展开发之二——Chrome扩展中脚本的运行机制 ...