pandas 数据索引与选取
我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列、区域、单元格。
其对应使用的方法如下:
一. 行,列 --> df[]
二. 区域 --> df.loc[], df.iloc[], df.ix[]
三. 单元格 --> df.at[], df.iat[]
下面开始练习:
import numpy as np
import pandas as pd df = pd.DataFrame(np.random.randn(6,4), index=list('abcdef'), columns=list('ABCD'))
1. df[]:
一维
行维度:
整数切片、标签切片、<布尔数组>
列维度:
标签索引、标签列表、Callable
df[:3]
df['a':'c']
df[[True,True,True,False,False,False]] # 前三行(布尔数组长度等于行数)
df[df['A']>0] # A列值大于0的行
df[(df['A']>0) | (df['B']>0)] # A列值大于0,或者B列大于0的行
df[(df['A']>0) & (df['C']>0)] # A列值大于0,并且C列大于0的行
df['A']
df[['A','B']]
df[lambda df: df.columns[0]] # Callable
2. df.loc[]
二维,先行后列
行维度:
标签索引、标签切片、标签列表、<布尔数组>、Callable
列维度:
标签索引、标签切片、标签列表、<布尔数组>、Callable
df.loc['a', :]
df.loc['a':'d', :]
df.loc[['a','b','c'], :]
df.loc[[True,True,True,False,False,False], :] # 前三行(布尔数组长度等于行数)
df.loc[df['A']>0, :]
df.loc[df.loc[:,'A']>0, :]
df.loc[df.iloc[:,0]>0, :]
df.loc[lambda _df: _df.A > 0, :]
df.loc[:, 'A']
df.loc[:, 'A':'C']
df.loc[:, ['A','B','C']]
df.loc[:, [True,True,True,False]] # 前三列(布尔数组长度等于行数)
df.loc[:, df.loc['a']>0] # a行大于0的列
df.loc[:, df.iloc[0]>0] # 0行大于0的列
df.loc[:, lambda _df: ['A', 'B']]
df.A.loc[lambda s: s > 0]
3. df.iloc[]
二维,先行后列
行维度:
整数索引、整数切片、整数列表、<布尔数组>
列维度:
整数索引、整数切片、整数列表、<布尔数组>、Callable
df.iloc[3, :]
df.iloc[:3, :]
df.iloc[[0,2,4], :]
df.iloc[[True,True,True,False,False,False], :] # 前三行(布尔数组长度等于行数)
df.iloc[df['A']>0, :] #× 为什么不行呢?想不通!
df.iloc[df.loc[:,'A']>0, :] #×
df.iloc[df.iloc[:,0]>0, :] #×
df.iloc[lambda _df: [0, 1], :]
df.iloc[:, 1]
df.iloc[:, 0:3]
df.iloc[:, [0,1,2]]
df.iloc[:, [True,True,True,False]] # 前三列(布尔数组长度等于行数)
df.iloc[:, df.loc['a']>0] #×
df.iloc[:, df.iloc[0]>0] #×
df.iloc[:, lambda _df: [0, 1]]
4. df.ix[]
二维,先行后列
行维度:
整数索引、整数切片、整数列表、
标签索引、标签切片、标签列表、
<布尔数组>、
Callable
列维度:
整数索引、整数切片、整数列表、
标签索引、标签切片、标签列表、
<布尔数组>、
Callable
df.ix[0, :]
df.ix[0:3, :]
df.ix[[0,1,2], :] df.ix['a', :]
df.ix['a':'d', :]
df.ix[['a','b','c'], :]
df.ix[:, 0]
df.ix[:, 0:3]
df.ix[:, [0,1,2]] df.ix[:, 'A']
df.ix[:, 'A':'C']
df.ix[:, ['A','B','C']]
5. df.at[]
精确定位单元格
行维度:
标签索引
列维度:
标签索引
df.at['a', 'A']
6. df.iat[]
精确定位单元格
行维度:
整数索引
列维度:
整数索引
df.iat[0, 0]
pandas 数据索引与选取的更多相关文章
- python库学习笔记——Pandas数据索引:ix、loc、iloc区别
Different Choices for Indexing 1. loc--通过行标签索引行数据 1.1 loc[1]表示索引的是第1行(index 是整数) import pandas as pd ...
- python数据分析之pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]
1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Se ...
- pandas 索引、选取和过滤
Series索引的工作方式类似于NumPy数组的索引,不过Series的索引值不只是整数,如: import numpy as np import pandas as pd from pandas i ...
- Python数据科学手册-Pandas:层级索引
一维数据 和 二维数据 分别使用Series 和 DataFrame 对象存储. 多维数据:数据索引 超过一俩个 键. Pandas提供了Panel 和 Panel4D对象 解决三维数据和四维数据. ...
- Pandas基本功能之选取索引和过滤
索引.选取和过滤 大部分的查询用法 类型 说明 obj[val] 选取DataFrame的单个列或一组列 obj.ix[val] 选取DataFrame的单个行或一组行 obj.ix[:,val] 选 ...
- 数据分析与展示——Pandas数据特征分析
Pandas数据特征分析 数据的排序 将一组数据通过摘要(有损地提取数据特征的过程)的方式,可以获得基本统计(含排序).分布/累计统计.数据特征(相关性.周期性等).数据挖掘(形成知识). .sort ...
- pandas小记:pandas数据输入输出
http://blog.csdn.net/pipisorry/article/details/52208727 数据输入输出 数据pickling pandas数据pickling比保存和读取csv文 ...
- Pandas数据排序
Pandas数据排序 .sort_index() 在指定轴上根据索引进行排序,索引排序后内容会跟随排序 b = pd.DataFrame(np.arange(20).reshape(4,5),inde ...
- Pandas数据存取
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA']) Pandas数据存取 Pandas可以存取多种介质类型数据, ...
随机推荐
- iOS之UI--主流框架的搭建--仿制QQ的UI框架
使用XCode搭建多个控制器界面,一般在实际开发中建议超过四个控制器界面使用纯代码. 下面的实例其实已经超过了四个,总结详细步骤的目的,主要是更熟悉XCode的StoryBoard使用细节. 先直接上 ...
- 一些在IOS中关于JS、H5开发的网站
1.JSPatch 2.
- androidannotation study(1)---Activity, Fragment,Custom Class & Custom View
androidannotation 是github上的一个开源项目. 主要是注解机制,可以改善android写代码的效率. Activity 使用 1.@EActivity 注解 可想而知,servi ...
- 分分钟学会使用memcached
1.首先要搭建服务端的程序. 下载地址:http://pan.baidu.com/s/1hrJ9jE0 密码:spqc 将对应版本的文件夹,放到D盘,任意位置即可 桌面-程序-运行-cmd-打开命令行 ...
- Windows Server 2012之搭建域控制器DC
安装域控制器,域(Domain) 1,本地管理员权限 2,设置静态IP 地址 3,至少有一个NTFS分区 4,操作系统版本(web版除外) 设置静态IP地址 dcpromo.exe命令不生效 ...
- LightSpeed 之Sql和存储过程的使用
虽然使用LightSpeed提供的Query就可以解决绝大部分问题,但如果业务逻辑过于复杂,有时候还是需要执行SQL语句或者存储过程 用SQL的方式就是使用FindBySql. FindBySql的参 ...
- SQL基础概念-指令
1,MySQL:(structured query language)用于访问和处理数据库的标准语言 2,什么是 SQL? SQL 指结构化查询语言 SQL 使我们有能 ...
- JSON、使用JSON进行数据交换的基础和原理
1. JSON 1.1. JSON 1.1.1. 什么是JSON JSON即Javascript对象表示法,是一种现在主流的数据交换格式.之所以应用广泛还是由其简单易读所决定的. 简单,只有六种类型的 ...
- Linux下集群的搭建
1.集群的简介: 集群(cluster)技术是一种较新的技术,通过集群技术,可以在付出较低成本的情况下获得在性能.可靠性.灵活性方面的相对较高的收益,其任务调度则是集群系统中的核心技术. 如果一个事情 ...
- [转帖]迅为4412开发板最小linux系统的存储空间修改
本文转自迅为论坛:http://www.topeetboard.com 最小linux系统的存储空间修改以修改成 1G 存储空间为例来修改,如果需要改成其他大小的存储空间,参照此方法修改即可. 首先连 ...