BZOJ2783: [JLOI2012]树
Description
第一行是两个整数N和S,其中N是树的节点数。
第二行是N个正整数,第i个整数表示节点i的正整数。
接下来的N-1行每行是2个整数x和y,表示y是x的儿子。
输出格式:
输出路径节点总和为S的路径数量。
输入样例: |
输出样例: |
3 3 1 2 3 1 2 1 3 |
2 |
数据范围:
对于30%数据,N≤100;
对于60%数据,N≤1000;
对于100%数据,N≤100000,所有权值以及S都不超过1000。
这个是JLOI2012的T1,发出来仅为了试题完整
=============================================================================================
在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。
Input
第一行是两个整数N和S,其中N是树的节点数。
第二行是N个正整数,第i个整数表示节点i的正整数。
接下来的N-1行每行是2个整数x和y,表示y是x的儿子。
Output
输出路径节点总和为S的路径数量。
Sample Input
1 2 3
1 2
1 3
Sample Output
HINT
对于100%数据,N≤100000,所有权值以及S都不超过1000。
#include<cstdio>
#include<cctype>
#include<queue>
#include<cmath>
#include<set>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
const int BufferSize=<<;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=,f=;char c=Getchar();
for(;!isdigit(c);c=Getchar()) if(c=='-') f=-;
for(;isdigit(c);c=Getchar()) x=x*+c-'';
return x*f;
}
const int maxn=;
int n,m,ans,val[maxn],first[maxn],next[maxn],to[maxn],in[maxn],e;
void AddEdge(int v,int u) {
to[++e]=v;next[e]=first[u];first[u]=e;in[v]++;
}
set<int> S;
void dfs(int x,int dep) {
if((*S.lower_bound(dep-m))==dep-m) ans++;
S.insert(dep);
ren dfs(to[i],dep+val[to[i]]);
S.erase(dep);
}
int main() {
n=read();m=read();
rep(i,,n) val[i]=read();
rep(i,,n) AddEdge(read(),read());
S.insert();
rep(i,,n) if(!in[i]) dfs(i,val[i]);
printf("%d\n",ans);
return ;
}
BZOJ2783: [JLOI2012]树的更多相关文章
- [bzoj2783][JLOI2012]树_树的遍历
树 bzoj2783 JLOI2012 题目大意:给定一棵n个点的树.求满足条件的路径条数.说一个路径是满足条件的,当且仅当这条路径上每个节点深度依次递增且点权和为S. 注释:$1\le n\le 1 ...
- BZOJ2783: [JLOI2012]树 dfs+set
2783: [JLOI2012]树 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 588 Solved: 347 Description 数列 提交文 ...
- [BZOJ2783/JLOI2012]树 树上倍增
Problem 树 题目大意 给出一棵树,求这个树上的路径的数量,要求路径上的点权和等于s且路径的上每个点深度不同. Solution 这个题目可以用不少方法做. 首先,路径上每个节点的深度不同决定了 ...
- BZOJ2783: [JLOI2012]树(树上前缀和+set)
Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 1215 Solved: 768[Submit][Status][Discuss] Descriptio ...
- 【dfs】【哈希表】bzoj2783 [JLOI2012]树
因为所有点权都是正的,所以对每个结点u来说,每条从根到它的路径上只有最多一个结点v符合d(u,v)=S. 所以我们可以边dfs边把每个结点的前缀和pre[u]存到一个数据结构里面,同时查询pre[u] ...
- 【BZOJ2783】[JLOI2012]树 DFS+栈+队列
[BZOJ2783][JLOI2012]树 Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节 ...
- 2783: [JLOI2012]树( dfs + BST )
直接DFS, 然后用set维护一下就好了.... O(nlogn) ------------------------------------------------------------------ ...
- 题解 P3252 【[JLOI2012]树】
\(\Huge{[JLOI2012]树}\) 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点 ...
- 洛谷——P3252 [JLOI2012]树
P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...
随机推荐
- Linux 命令行生成随机密码的十种方法
Linux操作系统的一大优点是对于同样一件事情,你可以使用高达数百种方法来实现它.例如,你可以通过数十种方法来生成随机密码.本文将介绍生成随机密码的十种方法.这些方法均收集于Command-Line ...
- ubuntu安装到选择位置时闪退
转自:http://tieba.baidu.com/p/3020839207
- 《ASP.NET1200例》未能找到元数据文件解决办法
今天在做一个项目的时候,遇到这样的一个问题,我用的是三层结构的.未能找到元数据文件“D:\SYSTEM\桌面\MyExam\MyExam\MyExamBLL\bin\Debug\BLL.dl ...
- 【转】Spring@Autowired注解与自动装配
1 配置文件的方法 我们编写spring 框架的代码时候.一直遵循是这样一个规则:所有在spring中注入的bean 都建议定义成私有的域变量.并且要配套写上 get 和 set方法. Boss ...
- Java for LeetCode 046 Permutations
Given a collection of numbers, return all possible permutations. For example, [1,2,3] have the follo ...
- codeforces C. Arithmetic Progression 解题报告
题目链接:http://codeforces.com/problemset/problem/382/C 题目意思:给定一个序列,问是否可以通过只插入一个数来使得整个序列成为等差数列,求出总共有多少可能 ...
- block引发的陷阱
block在项目的开发中使用时非常频繁的,苹果官方也极力推荐使用block.其实,究其本质,block就是指向结构体的指针(可利用运行时机制查看底层生成的c代码).然而在使用block时会存在很多陷阱 ...
- VS2010中“工具>选项中的VC++目录编辑功能已被否决”解决方法
转自:http://blog.csdn.net/chaijunkun/article/details/6658923 这是VS2010的改变,不能够在“工具-选项”中看到“VC++目录”了. 但是呢, ...
- 记录远程桌面登录者的IP和MAC
WINDOWS 2003 远程桌面不能记录登陆IP真是件头痛的事,本方法可以记录登陆者IP,具体的操作步骤如下: 1.建立一个存放日志的目录,如C盘下建立一个RDP的目录“C:/RDP”. 2.然后在 ...
- sysctl命令详解
个人一般sysctl -p 或sysctl -a比较多使用 sysctl配置与显示在/proc/sys目录中的内核参数.可以用sysctl来设置或重新设置联网功能,如IP转发.IP碎片去除以及源路由检 ...