BZOJ2783: [JLOI2012]树
Description
第一行是两个整数N和S,其中N是树的节点数。
第二行是N个正整数,第i个整数表示节点i的正整数。
接下来的N-1行每行是2个整数x和y,表示y是x的儿子。
输出格式:
输出路径节点总和为S的路径数量。
|
输入样例: |
输出样例: |
|
3 3 1 2 3 1 2 1 3 |
2 |
数据范围:
对于30%数据,N≤100;
对于60%数据,N≤1000;
对于100%数据,N≤100000,所有权值以及S都不超过1000。
这个是JLOI2012的T1,发出来仅为了试题完整
=============================================================================================
在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。
Input
第一行是两个整数N和S,其中N是树的节点数。
第二行是N个正整数,第i个整数表示节点i的正整数。
接下来的N-1行每行是2个整数x和y,表示y是x的儿子。
Output
输出路径节点总和为S的路径数量。
Sample Input
1 2 3
1 2
1 3
Sample Output
HINT
对于100%数据,N≤100000,所有权值以及S都不超过1000。
#include<cstdio>
#include<cctype>
#include<queue>
#include<cmath>
#include<set>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
const int BufferSize=<<;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=,f=;char c=Getchar();
for(;!isdigit(c);c=Getchar()) if(c=='-') f=-;
for(;isdigit(c);c=Getchar()) x=x*+c-'';
return x*f;
}
const int maxn=;
int n,m,ans,val[maxn],first[maxn],next[maxn],to[maxn],in[maxn],e;
void AddEdge(int v,int u) {
to[++e]=v;next[e]=first[u];first[u]=e;in[v]++;
}
set<int> S;
void dfs(int x,int dep) {
if((*S.lower_bound(dep-m))==dep-m) ans++;
S.insert(dep);
ren dfs(to[i],dep+val[to[i]]);
S.erase(dep);
}
int main() {
n=read();m=read();
rep(i,,n) val[i]=read();
rep(i,,n) AddEdge(read(),read());
S.insert();
rep(i,,n) if(!in[i]) dfs(i,val[i]);
printf("%d\n",ans);
return ;
}
BZOJ2783: [JLOI2012]树的更多相关文章
- [bzoj2783][JLOI2012]树_树的遍历
树 bzoj2783 JLOI2012 题目大意:给定一棵n个点的树.求满足条件的路径条数.说一个路径是满足条件的,当且仅当这条路径上每个节点深度依次递增且点权和为S. 注释:$1\le n\le 1 ...
- BZOJ2783: [JLOI2012]树 dfs+set
2783: [JLOI2012]树 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 588 Solved: 347 Description 数列 提交文 ...
- [BZOJ2783/JLOI2012]树 树上倍增
Problem 树 题目大意 给出一棵树,求这个树上的路径的数量,要求路径上的点权和等于s且路径的上每个点深度不同. Solution 这个题目可以用不少方法做. 首先,路径上每个节点的深度不同决定了 ...
- BZOJ2783: [JLOI2012]树(树上前缀和+set)
Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 1215 Solved: 768[Submit][Status][Discuss] Descriptio ...
- 【dfs】【哈希表】bzoj2783 [JLOI2012]树
因为所有点权都是正的,所以对每个结点u来说,每条从根到它的路径上只有最多一个结点v符合d(u,v)=S. 所以我们可以边dfs边把每个结点的前缀和pre[u]存到一个数据结构里面,同时查询pre[u] ...
- 【BZOJ2783】[JLOI2012]树 DFS+栈+队列
[BZOJ2783][JLOI2012]树 Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节 ...
- 2783: [JLOI2012]树( dfs + BST )
直接DFS, 然后用set维护一下就好了.... O(nlogn) ------------------------------------------------------------------ ...
- 题解 P3252 【[JLOI2012]树】
\(\Huge{[JLOI2012]树}\) 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点 ...
- 洛谷——P3252 [JLOI2012]树
P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...
随机推荐
- Java获取、删除文件和目录
package javatest; import java.io.File; import java.util.ArrayList; import java.util.regex.Pattern; c ...
- 创建一个最简单的Linux随机启动服务
转自: http://xiaoxia.org/2011/11/15/create-a-simple-linux-daemon/
- Gson简要使用
哇,原来我已经潜水2年多了,还是需要养成习惯写写东西啊. 最近在做一个java web service项目,需要用到jason,本人对java不是特别精通,于是开始搜索一些java平台的json类库. ...
- 16.O(logn)求Fibonacci数列[Fibonacci]
[题目] log(n)时间Fib(n),本质log(n)求a^n. [代码] C++ Code 12345678910111213141516171819202122232425262728293 ...
- ios如何生成crash报告
#include <signal.h> #include <execinfo.h> void OnProcessExceptionHandler(int sigl) { do ...
- nginx服务器的网站权限问题
有时候我们的网站根目录会从一个目录迁移到另一个目录,如果我们服务器使用的是nginx或者Apache,我们一般会配置好网站根目录后然后往直接把网站解压或者上传到根目录中,这样引起的问题是无法对对文件进 ...
- Java for LeetCode 043 Multiply Strings
Given two numbers represented as strings, return multiplication of the numbers as a string. Note: Th ...
- Flesch Reading Ease (poj 3371)
题意: 给出一篇规范的文章,求其 句子数.单词数 和 音节数把这3个值代入题目给出的公式,输出其结果,保留2位小数. 标记单词分隔符: 逗号(,) 和 空格( ) 句子分隔符:句号(.) 问号(?) ...
- jQuery常规选择器
//简单选择器$('div').css('color','red'); //元素选择器,返回多个元素$('#box').css('color','red');//id选择器,返回单个元素$('.box ...
- Tickeys -- 找对打字的感觉 (机械键盘音效软件)
最近发现公司里面越来越多人开始用机械键盘了,问了很多人为什么用机械键盘,主要有两种,一种是真的情怀,他们怀念十年前那种台式机硬邦邦的键盘,另外一种是因为喜欢机械键盘的声音,打字很爽.前者那真是没救了, ...