Description

数列
提交文件:sequence.pas/c/cpp
输入文件:sequence.in
输出文件:sequence.out
问题描述:
把一个正整数分成一列连续的正整数之和。这个数列必须包含至少两个正整数。你需要求出这个数列的最小长度。如果这个数列不存在则输出-1。
输入格式:
每行包含一个正整数n。
每个文件包含多行,读入直到文件结束。
输出格式:
对于每个n,输出一行,为这个数列的最小长度。
 

第一行是两个整数N和S,其中N是树的节点数。

第二行是N个正整数,第i个整数表示节点i的正整数。

接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

输出格式:

输出路径节点总和为S的路径数量。

输入样例:

输出样例:

3 3

1 2 3

1 2

1 3

2

数据范围:

对于30%数据,N≤100;

对于60%数据,N≤1000;

对于100%数据,N≤100000,所有权值以及S都不超过1000。

数据范围:
对于所有数据,n≤263

这个是JLOI2012的T1,发出来仅为了试题完整

=============================================================================================

在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。

Input

第一行是两个整数N和S,其中N是树的节点数。

第二行是N个正整数,第i个整数表示节点i的正整数。

接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

Output

输出路径节点总和为S的路径数量。

Sample Input

3 3

1 2 3

1 2

1 3

Sample Output

2

HINT

对于100%数据,N≤100000,所有权值以及S都不超过1000。

 
水题++,set大法好。
#include<cstdio>
#include<cctype>
#include<queue>
#include<cmath>
#include<set>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
const int BufferSize=<<;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=,f=;char c=Getchar();
for(;!isdigit(c);c=Getchar()) if(c=='-') f=-;
for(;isdigit(c);c=Getchar()) x=x*+c-'';
return x*f;
}
const int maxn=;
int n,m,ans,val[maxn],first[maxn],next[maxn],to[maxn],in[maxn],e;
void AddEdge(int v,int u) {
to[++e]=v;next[e]=first[u];first[u]=e;in[v]++;
}
set<int> S;
void dfs(int x,int dep) {
if((*S.lower_bound(dep-m))==dep-m) ans++;
S.insert(dep);
ren dfs(to[i],dep+val[to[i]]);
S.erase(dep);
}
int main() {
n=read();m=read();
rep(i,,n) val[i]=read();
rep(i,,n) AddEdge(read(),read());
S.insert();
rep(i,,n) if(!in[i]) dfs(i,val[i]);
printf("%d\n",ans);
return ;
}

BZOJ2783: [JLOI2012]树的更多相关文章

  1. [bzoj2783][JLOI2012]树_树的遍历

    树 bzoj2783 JLOI2012 题目大意:给定一棵n个点的树.求满足条件的路径条数.说一个路径是满足条件的,当且仅当这条路径上每个节点深度依次递增且点权和为S. 注释:$1\le n\le 1 ...

  2. BZOJ2783: [JLOI2012]树 dfs+set

    2783: [JLOI2012]树 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 588  Solved: 347 Description 数列 提交文 ...

  3. [BZOJ2783/JLOI2012]树 树上倍增

    Problem 树 题目大意 给出一棵树,求这个树上的路径的数量,要求路径上的点权和等于s且路径的上每个点深度不同. Solution 这个题目可以用不少方法做. 首先,路径上每个节点的深度不同决定了 ...

  4. BZOJ2783: [JLOI2012]树(树上前缀和+set)

    Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1215  Solved: 768[Submit][Status][Discuss] Descriptio ...

  5. 【dfs】【哈希表】bzoj2783 [JLOI2012]树

    因为所有点权都是正的,所以对每个结点u来说,每条从根到它的路径上只有最多一个结点v符合d(u,v)=S. 所以我们可以边dfs边把每个结点的前缀和pre[u]存到一个数据结构里面,同时查询pre[u] ...

  6. 【BZOJ2783】[JLOI2012]树 DFS+栈+队列

    [BZOJ2783][JLOI2012]树 Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节 ...

  7. 2783: [JLOI2012]树( dfs + BST )

    直接DFS, 然后用set维护一下就好了.... O(nlogn) ------------------------------------------------------------------ ...

  8. 题解 P3252 【[JLOI2012]树】

    \(\Huge{[JLOI2012]树}\) 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点 ...

  9. 洛谷——P3252 [JLOI2012]树

    P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...

随机推荐

  1. localResizeIMG

    http://think2011.net/localResizeIMG/test/ 演示一下 自己试试 点我直接进入演示页面 说明 在客户端压缩好要上传的图片可以节省带宽更快的发送给后端,特别适合在移 ...

  2. 如何利用phpize在生产环境中为php添加新的扩展php-bcmath

    在日常的开发当中,随着开发的功能越来越复杂.对运行环境的要求也就随着需求的变化需要不断地更新和变化.一个在线的生产系统不可能一开始就满足了所有的运行依赖,因此动态地添加依赖就显得比较必要了.如果你的应 ...

  3. (转)SQL Server 中WITH (NOLOCK)浅析

    概念介绍 开发人员喜欢在SQL脚本中使用WITH(NOLOCK), WITH(NOLOCK)其实是表提示(table_hint)中的一种.它等同于 READUNCOMMITTED . 具体的功能作用如 ...

  4. MySQL 全文搜索支持, mysql 5.6.4支持Innodb的全文检索和类memcache的nosql支持

    背景:搞个个人博客的全文搜索得用like啥的,现在mysql版本号已经大于5.6.4了也就支持了innodb的全文搜索了,刚查了下目前版本号都到MySQL Community Server 5.6.1 ...

  5. Linux服务器通过rz/sz轻松上传下载文件

    Linux服务器通过命令行远程访问时,上传文件还需要ftp所以不太方便,可以使用rz这个小工具来上传不太大的文件,方法如下: 输入rz,如果提示命令不存在,证明还没有安装,以CentOS为例,安装命令 ...

  6. August 1st, 2016, Week 32nd Monday

    Laughing is the most touching mask. 笑容是最动人的面具. I used to be very weclome in those I had met. And the ...

  7. BroadcastReceiver study

    BroadcastReceiver也就是“广播接收者”的意思,顾名思义,它就是用来接收来自系统和应用中的广播. 在Android系统中,广播体现在方方面面,例如当开机完成后系统会产生一条广播,接收到这 ...

  8. 一个非常简单的返回局部字符数组的C语言程序, 请问其输出结果?

    以下是该无聊的程序: #include <stdio.h> #include <string.h> char* get_str() {     int x[10];     c ...

  9. 13、在 uwp应用中,给图片添加高斯模糊滤镜效果(一)

    如果在应用中,如果想要给app 添加模糊滤镜,可能第一想到的是第三方类库,比如 Win2d.lumia Imaging SDK .WriteableBitmapEx,不可否认,这些类库功能强大,效果也 ...

  10. PHP GBK UTF8互转

    function gbk_to_utf8($str){     return mb_convert_encoding($str, 'utf-8', 'gbk'); }   function utf8_ ...